Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Plug-In Electric Vehicle Charge Time Robustness

2011-04-12
2011-01-0065
With the introduction of plug-in electric vehicles (PEVs), the conventional mindset of “fill-up time” will be challenged as customers top off their battery packs. For example, using a standard 120VAC outlet, it may take over 10hrs to achieve 40-50 miles of EV range-making range anxiety a daunting reality for EV owners. As customers adapt to this new mindset of charge time, it is critical that automotive OEMs supply the consumer with accurate charge time estimates. Charge time accuracy relies on a variety of parameters: battery pack size, power source, electric vehicle supply equipment (EVSE), on-board charging equipment, ancillary controller loads, battery temperature, and ambient temperature. Furthermore, as the charging events may take hours, the initial conditions may vary throughout a plug-in charge (PIC). The goal of this paper is to characterize charging system sensitivities and promote best practices for charge time estimations.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Technical Paper

Design Parameter Trade-off for Packaging of Stacked Prismatic Batteries

2011-04-12
2011-01-0667
Rechargeable energy storage systems with Lithium-ion pouch cells are subject to various ambient temperature conditions and go through thousands of charge-discharge cycles during the life time of operation. The cells may change their thickness with internal heat generation, cycling and any other mechanisms. The stacked prismatic cells thus experience face pressure and this could impact the pack electrical performance. The pack consists of stiff end plates keeping the pack in tact using bolts, cooling fins to maintain cell temperature and foam padding in between cells. The pack level thermal requirements limit the amount of temperature increase during normal operating conditions. Similarly, the structural requirements state that the stresses and the deflection in the end plates should be minimal. Uncertainties in cell, foam mechanical and thermal properties might add variation to the pack performance.
Technical Paper

High Voltage Hybrid Battery Tray Design Optimization

2011-04-12
2011-01-0671
Hybrid high voltage battery pack is not only heavy mass but also large in dimension. It interacts with the vehicle through the battery tray. Thus the battery tray is a critical element of the battery pack that interfaces between the battery and the vehicle, including the performances of safety/crash, NVH (modal), and durability. The tray is the largest and strongest structure in the battery pack holding the battery sections and other components including the battery disconnect unit (BDU) and other units that are not negligible in mass. This paper describes the mass optimization work done on one of the hybrid batteries using CAE simulation. This was a multidisciplinary optimization project, in which modal performance and fatigue damage were accessed through CAE analysis at both the battery pack level, and at the vehicle level.
Technical Paper

Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System

2011-04-12
2011-01-0893
Plug in hybrid electric vehicles (PHEV) and electric vehicles (EV) are using large lithium ion battery packs to store energy for powering electric traction motors. These batteries, or Rechargeable Energy Storage Systems (RESS), have a narrow temperature operating range and require thermal management systems to properly condition the batteries for use in automotive applications. This paper will focus on energy optimization of a RESS cooling system. The battery thermal management system for the General Motors Chevrolet Volt has three distinct modes for battery cooling: active cooling, passive cooling, and bypass. Testing was conducted on each individual thermal cooling mode to optimize, through control models, the energy efficiency of the system with the goal of maximizing electric vehicle range.
Technical Paper

Comprehensive Overview of Human Interface for an Extended Range Electric Vehicle

2011-04-12
2011-01-1023
An Extended Range Electric vehicle brings a wealth of new features since it is capable of driving on battery alone, has a range extending engine, and has a high voltage battery pack that can be recharged by plugging into wall power. The customer is able to interact with the vehicle's plug-in charging system through mobile applications. Along with all these new features is the challenge of designing a driver interface to provide important information to the customer. This paper will describe the unique customer interface features added to the vehicle, and will include some additional specifics related to the hardware used to provide the information.
Technical Paper

Approach to Validation Plan Development for Advanced Battery Systems in Vehicle Applications

2011-04-12
2011-01-1366
As advanced battery systems become a standard choice for mainstream production vehicle portfolios, comprehensive battery system validation plans are essential to ensure that the battery performance, reliability, and durability targets are met prior to vehicle integration. (Note: Safety and Abuse testing are outside of the scope of this paper.) The validation plan for the Chevrolet Volt Rechargeable_Energy Storage System (RESS), the first lithium-ion battery pack designed and manufactured by General Motors (GM), was developed using a functional silo approach based on the battery design requirements documentation. While the Chevrolet Volt was the lead program at General Motors to use this validation plan development approach, other GM programs with different battery system mounting locations and cooling techniques are now using this method.
Technical Paper

Thermal Behavior Study on HEV Air-Cooled Battery Pack

2011-04-12
2011-01-1368
Recently, an increased emphasis has been seen for improving the cooling uniformity and efficiency of HEV battery pack in an effort to increase the battery performance and life. This study examined the effects of geometry changes in cooling systems of battery packs on thermal behavior of battery cells and pressure drop across the battery pack. Initially, a multi-physics battery thermal model was correlated to physical test data. An analytical design of experiments (DOE) approach using Latin-hypercube technique was then developed by integrating the correlated battery thermal model with a commercial optimization code, iSIGHT, and a morphing code, DEP Morpher. The design concepts of battery pack cooling systems were finally identified by performing analytical DOE/optimization studies to estimate the effects of cooling flow and geometries of cooling ducts on the battery temperature variation and pressure drop across the battery pack.
Technical Paper

Voltec Battery Design and Manufacturing

2011-04-12
2011-01-1360
In July 2007, GM announced that it would produce the Chevy Volt, the first high-production volume electric vehicle with extended range capability, by 2010. In January 2009, General Motors announced that the Chevrolet Volt's lithium ion Battery Pack, capable of propelling the Chevy Volt on battery-supplied electric power for up to 40 miles, would be designed and assembled in-house. The T-shaped battery, a subset of the Voltec propulsion system, comprises 288 cells, weighs 190 kg, and is capable of supplying over 16 kWh of energy. Many technical challenges presented themselves to the team, including the liquid thermal management of the battery, the fast battery pack development timeline, and validation of an unproven high-speed assembly process. This paper will first present a general overview of the approach General Motors utilized to bring the various engineering organizations together to design, develop, and manufacture the Volt battery.
Technical Paper

Modeling of Battery Pack Thermal System for a Plug-In Hybrid Electric Vehicle

2011-04-12
2011-01-0666
Fuel economy and stringent emissions requirements have steered the automotive industry to invest in advanced propulsion hybrids, including Plug-in hybrid vehicles (PHEV) and Fuel cell vehicles. The choice of battery technology, its power and thermal management and the overall vehicle energy optimization during different conditions are crucial design considerations for PHEVs and battery electric vehicles (BEV). Current industry focus is on Li-Ion batteries due to their high energy density. However, extreme operating temperatures may impact battery life and performance. Different cooling strategies have been proposed for efficient thermal management of battery systems. This paper discusses the modeling and analysis strategy for a thermally managed Lithium Ion (Li-Ion) battery pack, with coolant as the conditioning medium.
Journal Article

The GM “Voltec” 4ET50 Multi-Mode Electric Transaxle

2011-04-12
2011-01-0887
The Chevrolet Volt is an electric vehicle (EV) that operates exclusively on battery power as long as useful energy is available in the battery pack under normal conditions. After the battery is depleted of available energy, extended-range (ER) driving uses fuel energy in an internal combustion engine (ICE), an on-board generator, and a large electric driving motor. This extended-range electric vehicle (EREV) utilizes electric energy in an automobile more effectively than a plug-in hybrid electric vehicle (PHEV), which characteristically blends electric and engine power together during driving. A specialized EREV powertrain, called the "Voltec," drives the Volt through its entire range of speed and acceleration with battery power alone, within the limit of battery energy, thereby displacing more fuel with electricity, emitting less CO₂, and producing less cold-start emissions than a PHEV operating in real-world conditions.
X