Refine Your Search

Topic

Author

Search Results

Journal Article

Combustion System Optimization of a Low Compression-Ratio PCCI Diesel Engine for Light-Duty Application

2009-04-20
2009-01-1464
A new combustion system with a low compression ratio (CR), specifically oriented towards the exploitment of partially Premixed Charge Compression Ignition (PCCI) diesel engines, has been developed and tested. The work is part of a cooperative research program between Politecnico di Torino (PT) and GM Powertrain Europe (GMPT-E) in the frame of Low Temperature Combustion (LTC) diesel combustion-system design and control. The baseline engine is derived from the GM 2.0L 4-cylinder in-line, 4-valve-per-cylinder EU5 engine. It features a CR of 16.5, a single stage VGT turbocharger and a second generation Common Rail (1600 bar). A newly designed combustion bowl was applied. It features a central dome and a large inlet diameter, in order to maximize the air utilization factor at high load and to tolerate advanced injection timings at partial load. Two different piston prototypes were manufactured by changing the internal volume of the new bowl so as to reach CR targets of 15.5 and 15.
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Journal Article

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

2015-04-14
2015-01-0796
A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates.
Journal Article

Numerical and Experimental Assessment of a Solenoid Common-Rail Injector Operation with Advanced Injection Strategies

2016-04-05
2016-01-0563
The selection and tuning of the Fuel Injection System (FIS) are among the most critical tasks for the automotive diesel engine design engineers. In fact, the injection strongly affects the combustion phenomena through which controlling a wide range of related issues such as pollutant emissions, combustion noise and fuel efficiency becomes feasible. In the scope of the engine design optimization, the simulation is an efficient tool in order to both predict the key performance parameters of the FIS, and to reduce the amount of experiments needed to reach the final product configuration. In this work a complete characterization of a solenoid ballistic injector for a Light-Duty Common Rail system was therefore implemented in a commercially available one-dimensional computational software called GT-SUITE. The main phenomena governing the injector operation were simulated by means of three sub-models (electro-magnetic, hydraulic and mechanical).
Journal Article

Investigation of the Load Limits and Emissions of a Naturally-Aspirated Direct-Injection Diesel Engine

2012-04-16
2012-01-0686
Cost and robustness are key factors in the design of diesel engines for low power density applications. Although compression ignition engines can produce very high power density output with turbocharging, naturally aspirated (NA) engines have advantages in terms of reduced cost and avoidance of system complexity. This work explores the use of direct injection (DI) and exhaust gas recirculation (EGR) in NA engines using experimental data from a single-cylinder research diesel engine. The engine was operated with a fixed atmospheric intake manifold pressure over a map of speed, air-to-fuel ratio, EGR, fuel injection pressure and injection timing. Conventional gaseous engine-out emissions were measured along with high speed cylinder pressure data to show the load limits and resulting emissions of the NA-DI engine studied. Well known reductions in NOX with increasing levels of EGR were confirmed with a corresponding loss in peak power output.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Technical Paper

Analysis of Different Internal EGR Solutions for Small Diesel Engines

2007-04-16
2007-01-0128
Although the use of Exhaust Gas Recirculation (EGR) is nowadays mandatory for automotive diesel engines to achieve NOx emissions levels complying with more and more stringent legislation requirements, electronically controlled EGR systems still represent an expensive technology, often unsuitable for small diesel engines for off-road applications or for two/three wheelers. An interesting option for these categories of small diesel engines is the so-called “internal EGR”, which is obtained by modifying the intake or the exhaust valve lift profile, in order to increase the fraction of exhaust residuals at the end of the intake stroke. Different valve lift profiles were therefore evaluated for a 2 cylinders, 700 cc, Lombardini IDI diesel engine, equipping a light 4 wheelers vehicle.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Numerical Simulation of Intake Port and In-Cylinder Flow in a Two-Valve Multi-Cylinder Diesel Engine

2016-10-17
2016-01-2158
In small and compact class vehicles equipped with diesel engines, the 2-valve-per-cylinder design still holds a significant share of the market. The current work describes the numerical simulation of port-valve-cylinder flow in a 1.2 liter 2-valve-per-cylinder diesel engine to characterize the performance of its manifold and intake ports. First, evaluation metrics were defined and analysis procedure was established for CFD assessment of intake manifold performance in multi-cylinder engines. Then the CFD analysis was carried out for the 2-valve engine in comparison with the baseline 4-valve reference engine. The results show that a complex interaction between intake port and flow distribution around TDC was found in the 2-valve engine, resulting in much higher mean flow velocity, inhomogeneity index/rotational momentum at the port inlet and consequently higher swirl ratio than the baseline 4-valve engine, which can cause high smoke at high load operations.
Technical Paper

Numerical Simulation of the Warm-Up of a Passenger Car Diesel Engine Equipped with an Advanced Cooling System

2016-04-05
2016-01-0555
The target for future cooling systems is to control the fluid temperatures and flows through a demand oriented control of the engine cooling to minimize energy demand and to achieve comfort, emissions, or service life advantages. The scope of this work is to create a complete engine thermal model (including both cooling and lubrication circuits) able to reproduce engine warm up along the New European Driving Cycle in order to assess the impact of different thermal management concepts on fuel consumption. The engine cylinder structure was modeled through a finite element representation of cylinder liner, piston and head in order to simulate the cylinder heat exchange to coolant or oil flow circuits and to predict heat distribution during transient conditions. Heat exchanges with other components (EGR cooler, turbo cooler, oil cooler) were also taken into account.
Technical Paper

Electrically Heated Catalysts for Cold-Start Emissions in Diesel Aftertreatment

2012-04-16
2012-01-1092
With a tighter regulatory environment, reduction of hydrocarbon (HC) and NOx emissions during cold-start has emerged as a major challenge for diesel engines. In the complex diesel aftertreatment system, more than 90% of engine-out NOx is removed in the underfloor SCR. However, the combination of low temperature exhaust and heat sink over DOC delays the SCR light-off during the cold start. In fact, the first 350 seconds during the cold light-duty FTP75 cycle contribute more than 50% of the total NOx tailpipe emission due to the low SCR temperature. For a fast SCR light-off, electrically heated catalyst (EHC) technology has been suggested to be an effective solution as a rapid warm-up strategy. In this work, the EHC, placed in front of DOC, utilizes both electrical power and hydrocarbon fuel. The smart energy management during the cold-start was crucial to optimize the EHC integrated aftertreatment system.
Technical Paper

CAE-Based Approach for Oil Pan NVH Optimization of Compact Automotive Diesel Engines

2011-04-12
2011-01-0934
In the automotive industry, CAE methods are now widely used to predict several functional characteristics and to develop designs that are first-time-capable to meet programs targets. The N&V area is one of the increasing key factors for a product differentiation; costumers expect not only more powerful and more fuel efficient but also less noisy engines. The oil pan is one of the bigger contributors to engine radiated noise and to diesel knocking, so that great attention is paid within GM to optimize oil pans of Diesel engines by following a CAE-based approach to achieve a “first-time-capable” design for this component. This allows focusing the subsequent N&V testing activities to pinpoint modifications mainly on those components with shorter lead time. This paper describes the key-steps that are executed to optimize the oil pan design by using CAE methods with the main intent of reducing its noise radiation.
Technical Paper

The Development of Advanced 2-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions

2011-04-12
2011-01-1140
Diesel engines have the potential to significantly increase vehicle fuel economy and decrease CO₂ emissions; however, efficient removal of NOx and particulate matter from the engine exhaust is required to meet stringent emission standards. A conventional diesel aftertreatment system consists of a Diesel Oxidation Catalyst (DOC), a urea-based Selective Catalyst Reduction (SCR) catalyst and a diesel particulate filter (DPF), and is widely used to meet the most recent NOx (nitrogen oxides comprising NO and NO₂) and particulate matter (PM) emission standards for medium- and heavy-duty sport utility and truck vehicles. The increasingly stringent emission targets have recently pushed this system layout towards an increase in size of the components and consequently higher system cost. An emerging technology developed recently involves placing the SCR catalyst onto the conventional wall-flow filter.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Technical Paper

Model-Based Analysis and Optimization of Turbocharged Diesel Engines with a Variable Geometry Compressor and Turbine System

2012-04-16
2012-01-0716
In the last few years, the application of downsizing and turbocharging to internal combustion engines has considerably increased due to the proven potential of this technology to increase engine efficiency. Variable geometry turbines have been largely adopted to optimize the exhaust energy recovery over a large operating range. Two-stage turbocharger systems have also been studied as a solution to improve engine low-end torque and efficiency, with the first units currently available on the market. However, the compressor technology is today still based on fixed geometry machines, which are sized to efficiently operate at the maximum air flow and therefore lead to poor efficiency values at low air flow conditions. Furthermore, the surge limits prevents the full capabilities of VGT systems to increase the boosting at low engine speed.
Technical Paper

Impact of Engine Operating Conditions on Particle Number and Size from a Small Displacement Automotive Diesel Engine

2012-04-16
2012-01-0429
Particulate Matter (PM) particles number and size distribution emitted from a small displacement automotive Common-Rail Diesel engine were analyzed in order to evaluate the impact of different engine operating parameters, such as engine load, EGR rate and injection pattern during DPF regeneration. The engine was equipped with a close coupled aftertreatment system, featuring a Diesel Oxidation Catalyst (DOC) and a Diesel Particulate Filter (DPF) integrated in a single canning. The pollutant emissions were sampled at two locations along the exhaust system: at the engine outlet and downstream of the diesel oxidation catalyst, in order to characterize particles entering the DOC and the DPF respectively. Particle size distributions were measured by means of a two stage dilution system coupled with a downstream Scanning Mobility Particle Sizer (SMPS).
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Fuel Effects on Combustion and Emissions of a Direct-Injection Diesel Engine Operating at Moderate to High Engine Speed and Load

2012-04-16
2012-01-0863
It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. Data are examined from a direct-injection single-cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Effect of DPF Design Parameters on Fuel Economy and Thermal Durability

2012-04-16
2012-01-0847
Diesel particle filters (DPF) have become the standard and essential aftertreatment components for all on-road diesel engines used in the US and Europe. The OBD requirements for DPF are becoming rigorously strict starting from 2015 model year. The pressure sensor or other strategies currently used for DPF diagnostics will most likely become insufficient to meet the new OBD requirements and a post DPF soot sensor might be necessary. This means that it will be even more imperative to develop a DPF design that would not have any soot leaks in its emission lifetime, otherwise the DPF will become a high warranty item.
X