Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Impact of Motor Capacitance on Vehicle Electrical System Transients

2011-04-12
2011-01-1009
The electrical architecture of today's automobiles employs a significant number of fractional horsepower motors to control wipers, windows, seats, etc. The typical motors are permanent magnet DC brush-commutated motors, often referred to as BM motors. These BM motors, while simple in design, have the inherent issue of creating short-duration, high-frequency electrical noise (caused by the constant interruption, or commutation, of the motor current). This electrical noise can readily lead to radio reception interference. In order to protect against this risk, a typical solution is to install a radio frequency (RF) filter internal to the motor. This filter generally includes a high-frequency ceramic or metal film capacitor across the motor terminals that connect to the vehicle electrical system.
Technical Paper

Voltec Charging System EMC Requirements and Test Methodologies

2011-04-12
2011-01-0742
With the advent of vehicle manufacturer driven on-board charging systems for plug-in and extended range electric vehicles, such as the Chevrolet Volt, important considerations need to be comprehended in both the requirements specified as well as the test methodologies and setups for electromagnetic compatibility (EMC). Typical automotive EMC standards (such as the SAE J551 and SAE J1113 series) that cover 12 volt systems have existed for many years. Additionally, there has been some development in recent years for high voltage EMC for automotive applications. However, on-board charging for vehicles presents yet another challenge in adopting requirements that have typically been in the consumer industry realm and merging those with both the traditional 12 V based system requirements as well as high voltage based systems.
X