Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Exhaust Tips Design Analysis

1997-04-08
971518
The air passages in tailpipe end geometries are investigated with Computational Fluid Dynamics (CFD) simulations. The overall objective of the simulations is to select an optimum design which has a mimimum capacity for noise generation. This is accomplished by comparing pressure drops between inlet and outlet and by examining the turbulent kinetic energy levels in the flow domain. Two designs for the tailpipe end geometries were evaluated. It was found that turbulent kinetic energy levels and pressure drops were lowest in a single pipe design which had relatively smooth internal contours. We conclude that the present CFD approach can provide useful design information in a short time frame (a few weeks) for exhaust pipe tip geometries for reduced pressure drop and noise generation.
Technical Paper

Computational Flow Analysis of Brake Cooling

1997-02-24
971039
Air flow around the front brake assembly was computed using STAR-CD version 2.300, a commercial Computational Fluid Dynamics (CFD) code in order to explore the possibility of using this technique as a design tool. The primary objective in a brake corner assembly design is to maximize air cooling of the brake rotor. It is a very challenging task that requires experiments that are both expensive and time consuming in order to evaluate and optimize the various design possibilities. In this study, it is demonstrated that the design procedure can be shortened and made less expensive and be accurate using flow simulations. Accordingly, the air flow around the front brake assembly was computed for three different designs and for three different car speeds. A computational mesh was built using PROSTAR, the STAR-CD pre and post-processor. The three-dimensional mesh had almost 900,000 cells. All geometrical components were modelled.
Technical Paper

HVAC Plenum Design Analysis

1995-02-01
950113
The air passages of a plenum are investigated with Computational Fluid Dynamics (CFD) simulations. The objectives of the simulations are to examine the pressure drop between inlet (windshield base) and outlet (blower inlet), the water intrusion quantity into the HVAC module, and the velocity profile and flow rate at the outlet. An initial analysis relies on a two dimensional mesh around the chimney area. The velocity distribution at the outlet and the pressure drop (between inlet and outlet) are compared between a baseline design and a design with guide vanes. A more detailed analysis is conducted with a three dimensional mesh, to examine designs with different baffle/vane locations and inlet openings. Designs with baffles were found to reduce the water quantity entering the HVAC module. However, the pressure drop increased because the flow paths were choked.
Technical Paper

Dual Fan Alternator Design Analysis

1996-02-01
960272
Component operating temperatures affect both the reliability and performance of automotive alternators. It is desirable to keep the rectifier bridge and regulator temperatures below 175 C because of the semiconductors contained in this area. At temperatures greater than this, expected lifespans have been observed to decay exponentially [1]. The air flow field surrounding an alternator and component temperature fields were investigated with Computational Fluid Dynamics (CFD) simulations. The objectives of the simulations were to examine the velocity field for the flow passage and the temperature fields for the components. Design proposals have been made to improve the air flow and to reduce the operating temperature. An initial investigation was performed by setting an alternator in a test configuration and applying the appropriate heat generation for each component. The high temperatures in the alternator components occurred in the stator and the rectifier.
X