Refine Your Search

Topic

Author

Search Results

Journal Article

Automotive Brake Hose Fluid Consumption Characteristics and Its Effects on Brake System Pedal Feel

2010-04-12
2010-01-0082
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

Development for an Aged Tire Durability Standard - Rationale for a Steady State DOE

2008-04-14
2008-01-1495
In response to the TREAD act of 2002, ASTM F09.30 Aged Tire Durability Task Group was formed with the objective of developing a scientifically valid, short duration aged durability test which correlates to field behavior. The target end-of-test condition was belt edge separation (or related damage). One strategy, driven by that objective, has been a steady state design of experiment investigating aging temperature and duration as well as roadwheel speed, pressure and deflection. The rationale behind investigating a steady state test and selecting these parameters and methodology for setting their initial values is reviewed.
Technical Paper

Development for an Aged Tire Durability Standard - Comparison of Stepped-Up Load and Steady State DOE Results

2008-04-14
2008-01-1494
In response to the TREAD act of 2002, ASTM F09.30 Aged Tire Durability Task Group was formed with the objective of developing a scientifically valid, short duration, laboratory aged tire durability test which correlates to field behavior. The target end-of-test condition was belt edge separation (or related damage). Two strategies have been investigated, aged stepped-up load and steady state DOE. Results of the two strategies are compared and contrasted and a test condition from the steady state DOE has been identified as the preferred direction for further validation.
Technical Paper

Development for an Aged Tire Durability Standard - Steady State DOE Study

2008-04-14
2008-01-1493
In the work leading to the TREAD Act, some members of Congress expressed the need for some type of aging test on light vehicle tires. Since no industry-wide recommended practice existed, the ASTM F09.30 Aged Tire Durability task group was established in 2002 to develop a scientifically valid, short duration, laboratory aged tire durability test which correlates to in-service aging. The target end-of-test condition was belt edge separation (or related tire conditions). One strategy, driven by that objective, has been a Steady State DOE investigating aging temperature and duration, as well as, roadwheel speed, pressure and deflection. Testing was performed on three tire types, including two where relevant field aging data was publicly available from NHTSA studies. A region of interest, within the design space, was identified where target end-of-test conditions were possible and undesirable (non-target or non-representative of those seen in consumer use) were avoided.
Technical Paper

Friction Damped Disc Brake Rotor

2010-04-12
2010-01-0077
Over the last five years, the automotive industry has experienced a trend towards niche performance vehicles equipped with high-output powertrains. These high performance vehicles also demand higher output braking systems. One method used to provide enhanced pedal feel and fade performance is to equip vehicles with higher apparent friction linings. The challenge then becomes how to design and manufacture these brake systems without high-frequency disc brake squeal and without paying a significant mass penalty. One alternative is to design disc brake rotors with increased damping. There are several options for increasing rotor damping. The classical approach is to increase the rotor's cast iron carbon content, thus increasing the internal material damping of the rotor. However, this methodology provides only a small increase in rotor damping. Alternatively, the rotor damping can be increased by introducing friction, sometimes referred to as Coulomb damping.
Technical Paper

Diagnosis of Off-Brake Performance Issues with Low Range Pressure Distribution Sensors

2010-04-12
2010-01-0073
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates.
Technical Paper

Technical Potential for Thermally Driven Mobile A/C Systems

2001-03-05
2001-01-0297
Aqua-ammonia absorption refrigeration cycle and R-134a Vapor jet-ejector refrigeration cycle for automotive air-conditioning were studied and analyzed. Thermally activated refrigeration cycles would utilize combustion engine exhaust gas or engine coolant to supply heat to the generator. For the absorption system, the thermodynamic cycle was analyzed and pressures, temperatures, concentrations, enthalpies, and mass flow rates at every point were computed based on input parameters simulate practical operating conditions of vehicles. Then, heat addition to the generator, heat removal rates from absorber, condenser, and rectifying unit, and total rejection heat transfer area were all calculated. For the jet-ejector system, the optimum ejector vapor mass ratio based on similar input parameters was found by solving diffuser's conservation equations of continuity, momentum, energy, and flow through primary ejector nozzle simultaneously.
Technical Paper

Advances in Complex Eigenvalue Analysis for Brake Noise

2001-04-30
2001-01-1603
Brake squeal has been analyzed by finite elements for some time. Among several methods, complex eigenvalue analysis is proving useful in the design process. It requires hardware verification and it falls into a simulation process. However, it is fast and it can provide guidance for resolving engineering problems. There are successes as well as frustrations in implementing this analysis tool. Its capability, robustness and reliability are closely examined in many companies. Generally, the low frequency squealing mechanism is a rotor axial direction mode that couples the pads, rotor, and other components; while higher frequency squeal mainly exhibits a rotor tangential mode. Design modifications such as selection of rotor design, insulator, chamfer, and lining materials are aimed specifically to cure these noise-generating mechanisms. In GM, complex eigenvalue analysis is used for brake noise analysis and noise reduction. Finite element models are validated with component modal testing.
Technical Paper

Adaptive Hydraulic Braking Traction Control for the 2003 Chevrolet Kodiak and GMC TopKick

2002-11-18
2002-01-3116
The development and application of a traction control Kodiak and GMC TopKick are explained. Most traction systems use engine management to enable traction control, while the adaptive braking system can provide traction assist for either gas or Diesel powered vehicles from 14,000 lbs. to 33,000 lbs. GVW. The performance driven criteria that established the design requirements and the development of a new product to meet these objectives are discussed. Both the vehicle manufacturer and the traction controller supplier provided these criteria. The basic ABS and traction control hydraulic schematics will be described as they apply to the vehicles. The results of the development program will be compared to the criteria used to establish the goals, and the benefits of the traction control system will be discussed.
Technical Paper

Dynamic Stress Correlation and Modeling of Driveline Bending Integrity for 4WD Sport Utility Vehicles

2002-03-04
2002-01-1044
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline bending integrity test for the longitudinal 4WD-driveline configuration. The dynamic stresses produced in the adapter/transfer case and propeller shaft can be predicted analytically using this model. Particularly, when the 4WD powertrain experiences its structural bending during the operation speed and the propeller shaft experiences the critical whirl motion and its structural bending due to the inherent imbalance. For a 4WD-Powertrain application, the dynamic coupling effect of a flexible powertrain with a flexible propeller shaft is significant and demonstrated in this paper. Three major subsystems are modeled in this analytical model, namely the powertrain, the final rear drive, and the propeller shafts.
Technical Paper

Power Electronics for GM 2-Mode Hybrid Electric Vehicles

2010-04-12
2010-01-1253
General Motors has developed a portfolio of advanced propulsion vehicles that has set the standard for optimal fuel economy in full-size utility vehicles. An overview of power electronics used in this portfolio, already available in the market, is presented. These components are key enablers for the strategic products in portfolio. Block diagrams for various configurations are also described to show common power electronics components used in traction and auxiliary systems. Briefly real wheel drive (RWD) and front wheel drive (FWD) vehicle applications are described. Specific analysis and test results are presented from development of Traction Power Inverter used in RWD vehicles. Vehicle-based durability profiles are used in analysis to predict IGBT power modules thermal performance. Using key metrics for volume and mass, benchmarking data is also presented.
Technical Paper

Analyzing Automotive Brake Components Using Birefringent Coating Technique

1993-03-01
930513
Engineers have used birefringent coating as a full field surface strain measuring tool for many years. The technique provides visual inspection of the structure on highly stressed areas that may lead to a potential structural failure. The usage of this technique for analysis of automotive brake components is very common. The recent development of the strain freezing technique extends further the capability of birefringent coating analysis. Hidden areas with high stresses can now be revealed for analysis.
Technical Paper

Establishing Brake Design Parameters for Customer Satisfaction

1993-03-01
930799
Brake engineers are very familiar with designing automotive brake systems to meet performance requirements such as those specified in FMVSS 105. However, merely complying with governmental regulations does not ensure that the resulting brake system will satisfy customers of the product. Many attributes of brake performance are characterized by our customers in very subjective terms. In many cases it is not apparent how to incorporate these subjective customer desires into our product designs. This paper describes a process for transforming customer preferences about brake system performance expressed in subjective terms into objective parameters for brake system design. The process for converting customer preferences into design parameters involves several steps. The desires of the customer must be identified. This is often done in marketing clinics, customer interviews or surveys.
Technical Paper

A Requirements Driven Design Methodology for a Vehicle Brake System

1993-03-01
930800
Defining or sizing the basic components in a vehicle brake system is done to satisfy specific requirements such as vehicle stopping distance, pedal travel and effort; braking efficiency as well as thermal considerations, cost, and packaging. This paper presents a flow-down method for computing brake system design parameters directly from those requirements. Relationships are also developed that enable the designer to understand trade-offs between requirements and system parameters.
Technical Paper

Three-Dimensional Navier-Stokes Analysis of Front End Air Flow for a Simplified Engine Compartment

1992-06-01
921091
A computer code for predicting cooling air flow through the radiator and the condenser has been developed. The Reynolds-averaged Navier-Stokes equations, together with the porous flow model for the radiator and the condenser, were solved to simulate front end air flow and the engine compartment flow simultaneously. These transport equations were discretized based on a finite-volume method in a transformed domain. The computational results for a simplified engine compartment showed overall flow information, such as the cooling air flow through the radiator and the condenser, the effects of an air dam, and the effects of fresh air vents near the top of the radiator and the condenser. Comparison of the available experimental data with the analysis showed excellent prediction of the cooling air flow through the radiator and the condenser.
Technical Paper

Vehicle Dynamics Synthesis Techniques for the Integration of Chassis Systems in Total Vehicle Design

1992-09-01
922104
A practical methodology is presented for the synthesis of Chassis Systems and their integration into a vehicle design to achieve a specified vehicle dynamic performance. By focusing on the fundamental performance requirements of gain, response time, and stability in midrange handling and the higher level design parameters of front and rear cornering compliance it is possible to find optimum values for these design parameters. The balancing of these higher level design parameters, in the context of overall vehicle performance, determines primary system requirements for the front suspension, rear suspension, tires, and steering system which may in turn be met by a variety of specific hardware designs.
X