Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

U.S. Automotive Corrosion Trends at 5 & 6 Years

1989-12-01
892578
In 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted surveys in the Detroit area every second year starting in 1985. The survey is a closed car parking lot survey of nineteen panels or partial panels checking for perforations, blisters and surface rust. Similar surveys have and will continue to be conducted at biyearly intervals for comparison purposes to track the results of industry wide corrosion protection “improvements”. This is a report of the results of the first three surveys. THE ACAP COMMITTEE BODY DIVISION has now completed the third in its series of biyearly surveys. It is now possible to see some very clear results of industry actions and some indication of future performance.
Technical Paper

General Motors DEXRON®-VI Global Service-Fill Specification

2006-10-16
2006-01-3242
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

Comparison of OEM Automatic Transmission Fluids in Industry Standard Tests

2007-10-29
2007-01-3987
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

U.S. Automotive Corrosion Trends Over the Past Decade

1995-02-01
950375
Since 1985, the Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area. The purpose of these surveys is to track industry wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the five surveys conducted to date.
Technical Paper

U. S. Automotive Corrosion Trends: 1998 SAE (ACAP) Automotive Body Corrosion Survey Results

2003-03-03
2003-01-1244
The Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) has conducted biannual surveys of automotive body corrosion in the Detroit area since 1985. The purpose of these surveys is to track industry-wide corrosion protection improvements and to make this information available for public consumption. The survey consists of a closed car parking lot survey checking for perforations, blisters, and surface rust. This paper reports the results of the seven surveys conducted since 1985.
X