Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

CoQ Tradeoffs in Manufacturing Process Improvement and Inspection Strategy Selection: A Case Study of Welded Automotive Assemblies

2012-04-16
2012-01-0514
In today's highly competitive automotive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing or improving their manufacturing process and/or by product inspection where many strategies with different cost implications are often available. Cost of Quality (CoQ) reconciles the competing objectives of quality maximization and cost minimization and serves as a useful framework for comparing available manufacturing process and inspection alternatives. In this paper, an analytic CoQ framework is discussed and some key findings are demonstrated using a set of basic inspection strategy scenarios. A case of a welded automotive assembly is chosen to explore the CoQ tradeoffs in inspection strategy selection and the value of welding process improvement. In the assembly process, many individual components are welded in series and each weld is inspected for quality.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Application of Variation Simulation in Body Assembly Process Design

2001-10-16
2001-01-3064
Build variation has long been recognized as one of the most important factors in vehicle performance. In this study an elastic assembly simulation program is used to guide a wheelhouse assembly process design to reduce build variation. Five (5) different clamping schemes are evaluated through the simulation program. From the five proposed process design choices, the best assembly process was identified, which results in reduced assembly variation and less tooling and manufacturing costs. Two different variation simulation approaches, one based on perturbation and the other based on Design of Experiments, were used to predict the assembly variation. Good agreement between the two approaches provided a validity check for the simulation tool.
Technical Paper

Robust Process Design for a Four-Bar Decklid Hinge System

2003-03-03
2003-01-0878
Auto components with large manufacturing variation may cause vehicle quality problems after they are assembled. The impact of this variation depends on the assembly process used. If the assembly process is sensitive to the component variation, the impact may be more significant. In this case, an assembly process with lower sensitivity to component variation will solve the problem. This paper presents an example where the component variation largely impacted the quality of the car, and a more robust assembly process solved the problem.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Economic and Environmental Tradeoffs in New Automotive Painting Technologies

1998-02-23
981164
Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder paints can potentially improve plant environmental performance, implementing these technologies often requires major capital investment. A process-based technical cost model was developed for examining the environmental and economic implications of automotive painting at the unit operation level. The tradeoffs between potential environmental benefits and their relative costs are evaluated for current and new technologies.
Technical Paper

A Connectorized Passive Optical Star for Automotive Networking Applications

1994-03-01
940798
This paper introduces for the first time a fully connectorized passive optical star for use with plastic optical fiber that addresses all automotive application requirements. A unique mixing element is presented that offers linear expandability, uniformity of insertion loss, and packaging flexibility. The star is constructed of all plastic molded components to make it low cost and produceable in high volume and is single-ended to facilitate vehicle integration. The star is connectorized to facilitate assembly into the vehicle power and signal distribution system.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

3D Vortex Simulation of Intake Flow in a Port-Cylinder with a Valve Seat and a Moving Piston

1996-05-01
961195
A Lagrangian random vortex-boundary element method has been developed for the simulation of unsteady incompressible flow inside three-dimensional domains with time-dependent boundaries, similar to IC engines. The solution method is entirely grid-free in the fluid domain and eliminates the difficult task of volumetric meshing of the complex engine geometry. Furthermore, due to the Lagrangian evaluation of the convective processes, numerical viscosity is virtually removed; thus permitting the direct simulation of flow at high Reynolds numbers. In this paper, a brief description of the numerical methodology is given, followed by an example of induction flow in an off-centered port-cylinder assembly with a harmonically driven piston and a valve seat situated directly below the port. The predicted flow is shown to resemble the flow visualization results of a laboratory experiment, despite the crude approximation used to represent the geometry.
Technical Paper

Application of a Constrained Layer Damping Treatment to a Cast Aluminum V6 Engine Front Cover

2005-05-16
2005-01-2286
Constrained Layer Damping (CLD) treatments have long provided a means to effectively impart damping to a structure [1, 2 and 3]. Traditionally, CLD treatments are constructed of a very thin polymer layer constrained by a thicker metal layer. Because the adhesion of a thin polymer layer is very sensitive to surface finish, surfaces that a CLD treatment can be effectively applied to have historically been limited to those that are very flat and smooth. New developments in material technology have provided thicker materials that are very effective and less expensive to apply when used as the damping layer in a CLD treatment. This paper documents the effectiveness of such a treatment on a cast aluminum front cover for a V6 engine. Physical construction of the treatment, material properties and design criteria will be discussed. Candidate applications, the assembly process, methods for secondary mechanical fastening will be presented.
Technical Paper

The Automotive Primary Power Supply System

1974-02-01
741208
This paper describes the major electrical characteristics of the automotive power supply system. It is a compilation of existing data and new information that will be helpful to both the electrical component and electronic assembly designers. Previously available battery/alternator data is organized to be useful to the designer. New dynamic information on battery impedance is displayed along with “cogging” transients, regulation limits and load dump characteristics.
Technical Paper

Nylon RIM Development for Automotive Body Panels

1985-02-01
850157
The performance and production requirements for future passenger vehicles has increased the efforts to replace metal body panels with plastic materials. This has been accomplished, to a large extent on some production vehicles that have been introduced recently. Unfortunately, these plastic body applications have necessitated special off-line handling or low temperature paint processing. However, the advantages of RIM nylon, offer the potential for uniquely new plastic body designs, that can be processed through existing assembly plants, much like the steel panels they are intended to replace. The intent of this paper is to discuss the rationale for future plastic body panel material selection and related nylon RIM development efforts.
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
Technical Paper

The Theory of Cost Risk in Design

1999-03-01
1999-01-0495
In a recent paper (Hoult & Meador, [1]) a novel method of estimating the costs of parts, and assemblies of parts, was presented. This paper proposed that the metric for increments of cost was the function log (dimension/tolerance). Although such log functions have a history,given in [1], starting with Boltzman and Shannon, it is curious that it arises in cost models. In particular, the thermodynamic basis of information theory, given by Shannon [2], seems quite implausible in the present context. In [1], we called the cost theory “Complexity Theory”, mainly to distinguish it from information theory. A major purpose of the present paper is to present a rigorous argument of how the log function arises in the present context. It happens that the agrument hinges on two key issues: properties of the machine making or assembling the part, and a certain limit process. Neither involves thermodynamic reasoning.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
X