Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Predicting Running Vehicle Exhaust Back Pressure in a Laboratory Using Air Flowing at Room Temperature and Spreadsheet Calculations

2009-04-20
2009-01-1154
In today’s highly competitive automotive environment people are always looking to develop processes that are fast, efficient, and effective. Moving testing from expensive prototype vehicles into the laboratory is an approach being implemented for many different vehicle subsystems. Specifically a process has recently been developed at General Motors that predicts exhaust back pressure performance for a running vehicle using laboratory testing and spreadsheet calculations. This paper describes the laboratory facility and procedure, the theory behind the calculations, and the correlation between vehicle test and laboratory based results. It also comments on the benefits of the process with respect to reduction in design iterations, quicker availability of results, and money savings.
Technical Paper

The CO2 Benefits of Electrification E-REVs, PHEVs and Charging Scenarios

2009-04-20
2009-01-1311
Reducing Carbon Dioxide (CO2) emissions is one of the major challenges for automobile manufacturers. This is driven by environmental, consumer, and regulatory demands in all major regions worldwide. For conventional vehicles, a host of technologies have been applied that improve the overall efficiency of the vehicle. This reduces CO2 contributions by directly reducing the amount of energy consumed to power a vehicle. The hybrid electric vehicle (HEV) continues this trend. However, there are limits to CO2 reduction due to improvements in efficiency alone. Other major improvements are realized when the CO2 content of the energy used to motivate vehicles is reduced. With the introduction of Extended Range Electric Vehicles (E-REVs) and Plug-in HEVs (PHEVs), electric grid energy displaces petroleum. This enables the potential for significant CO2 reductions as the CO2 per unit of electrical energy is reduced over time with the improving mix of energy sources for the electrical grid.
Technical Paper

Opportunities and Challenges for Blended 2-Way SCR/DPF Aftertreatment Technologies

2009-04-20
2009-01-0274
Diesel engines offer better fuel economy compared to their gasoline counterpart, but simultaneous control of NOx and particulates is very challenging. The blended 2-way SCR/DPF is recently emerging as a compact and cost-effective technology to reduce NOx and particulates from diesel exhaust using a single aftertreatment device. By coating SCR catalysts on and inside the walls of the conventional wall-flow filter, the 2-way SCR/DPF eliminates the volume and mass of the conventional SCR device. Compared with the conventional diesel aftertreatment system with a SCR and a DPF, the 2-way SCR/DPF technology offers the potential of significant cost saving and packaging flexibility. In this study, an engine dynamometer test cell was set up to repeatedly load and regenerate the SCR/DPF devices to mimic catalyst aging experienced during periodic high-temperature soot regenerations in the real world.
Technical Paper

Optimization of the Stratified-Charge Regime of the Reverse-Tumble Wall-Controlled Gasoline Direct-Injection Engine

2004-03-08
2004-01-0037
An optimum combustion chamber was designed for a reverse-tumble wall-controlled gasoline direct-injection engine by systematically optimizing each design element of the combustion system. The optimization was based on fuel-economy, hydrocarbon, combustion-stability and smoke measurements at a 2000 rev/min test-point representation of road-load operating condition. The combustion-chamber design parameters that were optimized in this study included: piston-bowl depth, piston-bowl opening width, piston-bowl-volume ratio, exhaust-side squish height, bowl-lip draft angle, distance between spark-plug electrode and piston-bowl lip, spark-plug-electrode length, and injector spray-cone angle. No attempt was made to optimize the gross engine parameters such as bore and stroke or the intake system, since this study focused on optimizing a reverse-tumble wall-controlled gasoline direct-injection variant of an existing port-fueled injection engine.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Full-Load Operation

2004-03-08
2004-01-0034
Full-load operation of a small-displacement spark-ignition direct-injection (SIDI) engine was thoroughly investigated by means of computational analysis and engine measurements. The performance is affected by many different factors, which can be grouped as those pertaining to volumetric efficiency, to mixing and stratification, and to system issues, respectively. Volumetric efficiency is affected by flow losses, tuning and charge cooling. Charge cooling due to spray vaporization is often touted as the most significant benefit of direct-injection on full-load performance. However, if wall wetting occurs, this benefit may be completely negated or even reversed. The fuel-air mixing is strongly affected by the injection timing and characteristics at lower engine speeds, while at higher engine speeds the intake flow dominates the transport of fuel particles and resultant vapor distribution. A higher injector flow rate enhances mixing especially at higher engine speeds.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Evaluation of New Bag Sampling Materials for Low Level Emissions Measurements

2002-03-04
2002-01-0051
Copolymer materials have been used for the collection of vehicle exhaust gas samples since the inception of regulatory standards. Some of these copolymers contain N,N-dimethylacetamide (DMA), which is added to improve the physical properties of the copolymer and eliminate manufacturing problems. DMA is highly soluble in water, and in effect is rinsed from the emission bag surface by humid exhaust gas samples. This study shows that DMA can thus incorrectly add to test vehicle overall hydrocarbon emissions. The DMA contribution can be significant for lower level emission vehicles. This study introduces a new bag material, KYNAR®, which significantly reduces this interference.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

Flammability Testing of Automotive Heating Ventilation and Air Conditioning Modules Made from Polymers Containing Flame Retardant Chemicals

2002-11-18
2002-01-3091
Flammability tests were conducted on one control HVAC module and two experimental automotive HVAC modules containing flame retardant chemicals. The HVAC modules were exposed to a heptane pool fire. All three HVAC modules burned under these conditions. The mass loss rates of the control and experimental HVAC modules were similar. The flame retardant chemicals caused a 50% reduction in the heat produced, a 751 - 897% increase in the carbon monoxide produced, a 4,867 - 5,567% increase in the gaseous hydrocarbon produced, and a 3,875 - 4,725% increase in the smoke produced when the HVAC modules burned under these conditions. These quantitative results are consistent with visual observations made during these tests that the experimental HVAC modules produced substantially more smoke than the control HVAC module.
Technical Paper

Accuracy of Total Hydrocarbon Analyzer Measurements Measurements in the SULEV Region

2003-03-03
2003-01-0388
The super-ultra-low-emission-vehicle (SULEV) non-methane organic gas (NMOG) hydrocarbon exhaust standard as legislated by the state of California LEV II regulations is 10 milligrams per mile. This requires that the associative instrumentation must be capable of accurately and precisely determining total hydrocarbons (THC) concentrations on the order of 10 parts per billion-carbon (ppbC) for vehicle tests run under optimum conditions on a bag mini-diluter (BMD) test site. The flame ionization detector (FID) is the standard instrument used in the measurement of THC. Currently, there are many instrument manufacturers that produce these types of analyzers. This paper studies the limit of detection and accuracy capabilities of one of these instruments, the Beckman 400A FID. In addition, the paper shows evidence that supports that this “state of technology” as described by this instrument, is sufficient to meet the demands of the today's most stringent, vehicle emission standards.
Technical Paper

Experimental Investigation of the Near Wake of a Pick-up Truck

2003-03-03
2003-01-0651
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (∼3×105) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency.
Technical Paper

Optimization of a Commercially Available Chemiluminscence Analyzer for Low Level NOx Measurement

2003-03-03
2003-01-0389
As automotive exhaust emission levels reduce, there is a need for increased sensitivity of the NOx measurement. This paper documents work performed to increase the sensitivity of the existing Rosemount NGA 2000 CLD Analyzer. The effects of sample flow rate, ozone flow rate and ozone supply gas were explored. Limit of Detection (LOD) and Converter Efficiency were evaluated. The goal of this optimization has been to provide a cost effective and expeditious method to improve the low level NOx measurement. Changing the ozone generator supply gas from air to oxygen and increasing the sample and ozone flow rates resulted in a LOD improvement from 17 ppb to 8 ppb.
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Technical Paper

Thermal-Mechanical Durability of DOC and DPF After-treatment System for Light Heavy Pickup Truck Application

2009-11-02
2009-01-2707
The US Environmental Protection Agency (EPA)’s heavy duty diesel emission standard was tightened beginning from 2007 with the introduction of ultra-low-sulfur diesel fuel. Most heavy duty diesel applications were required to equip Particulate Matter (PM) after-treatment systems to meet the new tighter, emission standard. Systems utilizing Diesel Oxidation Catalyst (DOC) and Catalyzed-Diesel Particulate Filter (DPF) are a mainstream of modern diesel PM after-treatment systems. To ensure appropriate performance of the system, periodic cleaning of the PM trapped in DPF by its oxidation (a process called “regeneration”) is necessary. As a result, of this regeneration, DOC’s and DPF’s can be exposed to hundreds of thermal cycles during their lifetime. Therefore, to understand the thermo-mechanical performance of the DOC and DPF is an essential issue to evaluate the durability of the system.
Technical Paper

Combustion Characteristics of a Reverse-Tumble Wall-Controlled Direct-Injection Stratified-Charge Engine

2003-03-03
2003-01-0543
Experimentally obtained combustion responses of a typical reverse-tumble wall-controlled direct-injection stratified-charge engine to operating variables are described. During stratified-charge operation, the injection timing, ignition timing, air-fuel ratio, and levels of exhaust gas recirculation (EGR) generally determine the fuel economy and emissions performance of the engine. A detailed heat-release analysis of the experimental cylinder-pressure data was conducted. It was observed that injection and ignition timings determine the thermal efficiency of the engine by controlling primarily the combustion efficiency of the stratified charge. Hence, combustion phasing is determined by a compromise between work-conversion efficiency and combustion efficiency. To reduce nitric-oxide (NOx) emissions, a reduction in overall air-fuel ratio as well as EGR addition is required.
Technical Paper

On the Potential of Low Heat Rejection DI Diesel Engines to Reduce Tail-Pipe Emissions

2005-04-11
2005-01-0920
Heat transfer to the combustion chamber walls constitutes a significant portion of the overall energy losses over the working cycle of a direct injection (DI) diesel engine. In the last few decades, numerous research efforts have been devoted to investigating the prospects of boosting efficiency by insulating the combustion chamber. Relatively few studies have focused on the prospects of reducing emissions by applying combustion chamber insulation. A main purpose of this study is to assess the potential of reducing in-cylinder soot as well as boosting aftertreatment performance by means of partially insulating the combustion chamber. Based on the findings from a conceptual study, a Low Heat Rejection (LHR) design, featuring a Nimonic 80A insert into an Aluminum piston, was developed and tested experimentally at various loads in a single-cylinder Hatz-engine.
Technical Paper

Dual Catalytic Converters

1975-02-01
750176
The stringent 1978 emission standards of 0.41 gm/mi HC, 3.4 gm/mile CO, and 0.4 gm/mi NOx may require the use of a dual catalytic converter system (reducing and oxidizing catalyst). These emission requirements have been achieved at low mileage with such a system, but it is complex and has exhibited poor durability. This system also results in the loss of fuel economy at the 1978 emission levels.
Technical Paper

General Motors Phase II Catalyst System

1978-02-01
780205
Three-way catalysts provide a means of catalytically achieving lower NOx emission levels while maintaining good control of HC and CO emissions. However, very accurate control of air-fuel ratio is necessary. The precise air-fuel ratio control required is accomplished by employing a closed loop fuel metering system in conjunction with an exhaust gas sensor and an electronic control unit. To gain production experience with this type of system, General Motors is introducing it on two 1978 engine families sold in California. One is a 2.5 litre L-4 engine and the other is a 3.8 litre V-6 engine. Closed loop controlled carburetors are used on both systems. This paper discusses these 1978 systems. The components used on both systems are described and emission and fuel economy results are reviewed.
X