Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Use of Seat Cushion Accelerometer as a Tool to Support Vehicle Dynamics Ride Development by the Objective Characterization of Vehicle Ride

The definition of the ride attribute is very difficult because it is part of human perception during driving. For vehicle dynamics work, have details of what is good or what is bad considering driving comfort, usually, induces some controversial opinions. In this work, the use of a single accelerometer is shown as a tool to characterize the basic vehicle vibrational behavior and so support the correlation between human perception and the resulting ride comfort presented. By using PSD theory, it is possible to “see” how the vehicle vibrates and so have a better understanding of where in the vehicle is located a possible issue and how to fix it. In a more advanced point of view is possible to characterize each vehicle with a ride “personality”, this meaning how each brand and model behave and so how vehicle behave to the consumer approve or complain about it..
Technical Paper

Blanks Physical Parameters Optimization for Automotive Panels Deep Drawing

This work conducted an optimization in sheet metal blank's sizes for cold pressing automotive parts, comparing dimensional characteristics of automotive hood outer panels deep drawn with commonly used blank sizes for this process. As a result, it was possible to suggest modifications to smaller blank sizes, accordingly to the improvement accomplished in this work. The experimental study was conducted from observations in part's superficial aspects after its deep drawing process, which was realized in a commonly used tooling for automotive industry, with a blank's width reduction for the suggested case. The results showed a cost reduction opportunity based in this optimization.
Technical Paper

Using Spherical Beamforming to Evaluate Wind Noise Paths

Microphone array based techniques have a growing range of applications in the vehicle development process. This paper evaluates the use of Spherical Beamforming (SB) to investigate the transmission of wind-generated noise into the passenger cabin, as one of the alternative ways to perform in-vehicle troubleshooting and design optimization. On track measurements at dominant wind noise conditions are taken with the spherical microphone array positioned at the front passenger head location. Experimental diligence and careful processing necessary to enable concise conclusions are briefly described. The application of Spherical Harmonics Angularly Resolved Pressure (SHARP) and the Filter-And-Sum (FAS) algorithms is compared. Data analysis variables, run-to-run repeatability and system capability to identify design modifications are studied.
Technical Paper

How to Achieve Faster, Cheaper and High Quality Parts by RTV Silicone Rubber Process

In the automotive industries, time and parts production costs are fundamental, mainly in prototyping production. The RTV (Room Temperature Vulcanized) process is an important alternative production to flexible silicone molds when you need to inject polyurethane parts. The objective is time reduction in tooling production and parts. RTV requires notable initial investments in equipments. Many times, this cost does not fit in the automotive third part company's budget. This work shows how is possible to obtain parts by RTV process with excellent quality, without high investments in equipments and without quality loss in produced parts. Lead times and tooling and parts costs are analyzed. Due to equipments low costs, this alternative is accessible not only to automotive industries but also to small and medium suppliers.