Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Interaction of Vehicle Ride Vibration Control with Lateral Stability Using Active Rear Wheel Steering

In this work the effects of vehicle vertical vibrations on the tires/road cornering forces, and then consequently on vehicle lateral dynamics are studied. This is achieved through a ride model and a handling model linked together by a non-linear tire model. The ride model is a half vehicle with four degrees of freedom (bounce and pitch motions for vehicle body and two bounce motions for the two axles). The front and rear suspension are a hydro-pneumatic slow-active systems with 6 Hz cut-off frequency designed based on linear optimal control theory. Vehicle lateral dynamics is modeled as two degrees (yaw and lateral motions) incorporating a driver model. An optimal rear wheel steering control in addition to the front steering is considered in the vehicle model to represent a Four Wheel Steering (4WS) system. The tire non-linearity is represented by the Magic Formula tire model.
Technical Paper

Road Humps Design Improvement Using Genetic Algorithms

The number of speed humps (sleeping policemen) has seen a global increase in the last decade. This paper addresses the geometric requirements of these humps using Genetic Algorithms optimization techniques to control the speed, stability, and ride feel of the traversing vehicles. The interaction between road hump profile and the modeled vehicles (passenger and a two-axle truck) are studied with a dynamic model. The shape of the proposed profile is described by numbers of amplitudes of harmonic functions. The extreme acceleration of the drivers’ seats of the vehicles traversing the hump is set as multiobjective function for the optimization process, taking into consideration the road-holding ability represented by the tire lift-off speed. The results show that hump geometry can be improved while fulfilling the requirements of speed control and vehicle dynamic responses.
Technical Paper

The Importance of Vehicle Gear Tooth Meshing Stiffness in Gear Tooth Damage Quantification

The early detection of incipient failure in a mechanical system is of great practical importance as it permits scheduled inspections without costly shutdowns and indicates the urgency and locations for repair before a system incurs catastrophic failure. However, in this work a new technique for processing vibration data to quantify the level of damage, cracks only, in a gear system. The technique consists of a nonlinear numerical optimization. The optimization uses a dynamic model of the gear mesh used in vehicle gearbox and forms an estimate of both time-varying and frequency-varying mesh stiffness that best corresponds to the given set of vibration data. The procedure developed in this study can be applied as a part of either an onboard machine health monitoring system or a health diagnostic system used in the regular maintenance.
Technical Paper

Hybrid Shape Optimization and Failure Analysis of Laminated Fibrous Composite E-Springs for Vehicle Suspension

A hybrid search optimization is presented in order to optimize hybrid laminated fibrous composite E-springs for vehicle suspension systems. This optimization is conducted with both of the geometrical configuration and laminate structure of the E-spring. A genetic algorithm along with a hill-climbing random-walk approach are used through a developed NURBS-based technique in order to conduct this optimization. A mathematical-modeling-based mid-ware technology is introduced in order to fully automate the optimization process through linking the run engines of mathematical modeling and finite element analysis from within the mathematical modeling engine. A hybrid approach of the inter-laminar shear stress and Tsai-Wu criteria is first implemented in order to identify failure indices of the resulting optimum shape and laminate structure.
Technical Paper

Influence of Active Suspension Preview Control on the Vehicle Lateral Dynamics

The dynamics of vehicles became one of the most important aspects for current developments of electronically controlled steering, suspension and traction/braking systems. However, most of the published research on vehicle maneuverability doesn't take into account the effect of the dynamic tire load and its variation on uneven roads. Clearly, it was stated that using a suitable active suspension system could reduce this dynamic tire load. This dynamic tire load is playing a vital role as it is the major link between the vertical and lateral forces exerted on the road, which affects the lateral dynamics of the vehicle. In this paper, a practical hydro-pneumatic limited bandwidth active suspension system with and without wheelbase preview control is used to study its influence on the vehicle stability in lateral direction. The model is a longitudinal half car with four degrees of freedom.
Technical Paper

New Suspension Design for Heavy Duty Trucks: Dynamic Considerations

It is well known that the excessive levels of vibration in heavy vehicles negatively affect driver comfortability, cargo safety and road condition. The current challenge in the field of suspension design for heavy vehicles is to optimize the suspension dynamic parameters to improve such requirements. Almost all of the previous work in this field is based on applying the mathematical optimization considering active or passive suspension systems to obtain the optimal dynamic parameters. In this work a new passive suspension systems for heavy trucks is suggested and compared with the conventional passive suspension systems. The new systems rely on transferring the vertical motion, (vibration), into horizontal motion through a bell-crank mechanism to be taken by a horizontal passive suspension system. The system dynamic parameters like body acceleration, suspension travel and dynamic tire load are calculated assuming random excitation due to road irregularities.
Technical Paper

Optimized Proportional Integral Derivative Controller of Vehicle Active Suspension System Using Genetic Algorithm

Proportional integral derivative (PID) control method is an effective, easy in implementation and famous control technique applied in several engineering systems. Also, Genetic Algorithm (GA) is a suitable approach for optimum searching problems in science, industrial and engineering applications. This paper presents the usage of GA for determining the optimal PID controller gains and their implementation in the active quarter-vehicle suspension system to achieve good ride comfort and vehicle stability levels. The GA is applied to solve a combined multi-objective (CMO) problem to tune PID controller gains of vehicle active suspension system for the first time. The active vehicle suspension system is modeled mathematically as a two degree-of-freedom mechanical system and simulated using Matlab/Simulink software.
Technical Paper

Vibration Control of an Active Seat Suspension System Integrated Pregnant Woman Body Model

Proportional-integral-derivative (PID) controller is effective, popular and cost effective for a lot of scientific and engineering applications. In this paper, PID and fuzzy-self-tuning PID (FSTPID) controllers are applied to improve the performance of an active seat suspension system to enhance the pregnant woman comfort. The equations of motion of thirteen-degrees-of-freedom (13-DOF) active seat suspension system incorporating pregnant woman body model are derived and simulated. PID gains are tuned and estimated using genetic algorithm (GA) to formulate GA PID controller. In FSTPID, fuzzy logic technique is used to tune PID controller gains by selecting appropriate fuzzy rules using Matlab/Simulink software. Both controlled active seat suspension systems are compared with a passive seat suspension. Suspension performance is evaluated under bump and random road excitations in order to verify the success of the proposed controllers.