Refine Your Search



Search Results

Technical Paper

A Single-chip RISC Microcontroller Boarding on MY1998

This paper presents a single-chip 32bit RISC microcontroller boarding on MY1998 dedicated to highly complicated powertrain management. The high performance 32bit RISC CPU provides the only solution to meet requirements of drastic CPU performance enhancement and integration. Furthermore, a 32bit counter, based on a 20 MHz clock, and a 32bit multiplier make possible misfire detection and precise analysis of the engine management strategy, especially cylinder individual air-fuel ratio control.
Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

Mixture Formation During Cold Starting and Warm-up in Spark Ignition Engines

A thermodynamic analysis of mixture formation in cylinders that takes into account mixture inhomogeneity and the wall film is presented. Conditions for obtaining low hydrocarbon emission are clarified analytically as a function of the fuel mass of the wall film and inhomogeneity of the mixture. Optimum processes for atomizing and vaporizing fuel are presented to reduce the inhomogeneity and the fuel mass of the film.
Technical Paper

Effect of Spray Characteristics on Combustion in a Direct Injection Spark Ignition Engine

Meeting the future exhaust emission and fuel consumption standards for passenger cars will require refinements in how the combustion process is carried out in spark ignition engines. A direct injection system decrease fuel consumption under road load cruising conditions, and stratified charge of the fuel mixture is particularly effective for ultra lean combustion. On the other hands, there are requirements for higher output power of gasoline engines. A direct injection system for a spark ignition engine is seen as a promising technique to meet these requirements. To get higher output power at wide open throttle conditions, spray characteristics and in-cylinder air flow must be optimized. In this paper, the engine system, which has a side injection type engine and flat piston, was investigated. We tried some injectors, which have different spray characteristics, and examined effects of spray characteristics on combustion of the direct injection gasoline engine.
Technical Paper

Air-Fuel Ratio Sensor Utilizing Ion Transportation in Zirconia Electrolyte

To detect an air-fuel ratio in wide range is very important to control the automotive engines with low fuel consumption and low exhaust emissions. Although the application of zirconia electrolyte for this purpose has been proposed by the authors several years ago, there remained several problems due to the contamination of gas diffusion apertures which are exposed to the exhaust gas environment. Here the behavior of ions transported in zirconia electrolyte have been analyzed to optimize the structure and characteristics, and to guarantee the long life operation of sensor. Gas contents and their reactions in combustion process under the wide range air-fuel ratio have been analyzed, and these results were reflected to the analysis of ion transportation in zirconia electrolyte. Experimental results supported the analytical results, and they showed the possibilities of long life operation of zirconia air-fuel ratio sensor utilizing ion transportation phenomena.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

Study on Mixture Formation and Ignition Process in Spark Ignition Engine Using Optical Combustion Sensor

Mixture formation and the ignition process in 4 cycle 4 cylinder spark ignition engines were investigated, using an optical combustion sensor that combines fiber optics with a conventional spark plug. The sensor consists of a 1-mm diameter quartz glass optical fiber cable inserted through the center of a spark plug. The tip of the fiber is machined into a convex shape to provide a 120-degree view of the combustion chamber interior. Light emitted by the spark discharge between spark electrodes and the combustion flames in the cylinder is transmitted by the optical cable to an opto-electric transducer. As a result, the ignition and combustion process which depends on the mixture formation can be easily monitored without installing transparent pistons and cylinders. This sensor can give more accurate information on mixture formation in the cylinders.
Technical Paper

Real Time Control for Fuel Injection System with Compensating Cylinder-by-Cylinder Deviation

We have examined a new precise control method of the air fuel ratio during a transient state which provides improved exhaust characteristics of automobile engines. We investigated the measurement method for the mass of fresh air inducted by the cylinder, which is most important for controlling the air fuel ratio. The mass of fresh air must be measured in real time because it changes in each cycle during a transient state. With an conventional systems, it has been difficult to get accurate measurement of this rapidly changing mass of fresh air. The method we studied measures the mass of fresh air by using the intake manifold pressure and air flow sensors. During a transient state, the reverse flow of the residual gas from the cylinder into the intake manifold, which occurs at the first stage of the suction stroke, changes with each cycle. The mass of fresh air changes accordingly.
Technical Paper

Engine Control System for Lean Combustion

The basic structure of a new engine control system for lean combustion is presented. A fuel atomizer is adopted to obtain a uniform mixture of fine fuel droplets, 40µm in diameter. A new air-fuel ratio sensor and an integrated control method for air flow are developed for precise and rapid response control of cylinder air-fuel ratios 8 to 26. Great improvements in both fuel consumption and exhaust emission characteristics are obtained by increasing the mean air-fuel ratio to 25 under cruising condition. There are made possible by the stable combustion provided by the fine mixture. This system provides the driver with quick vehicle response and good fuel economy, while ensuring smooth driveability.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1989

The detection range of an air-fuel ratio sensor is expanded in the rich A/F region. Using a simulation technique, the limiting cause of the detection range in the rich A/F region is identified as insufficient combustion rates of CO and H2 with O2 on the electrode, which prevent realization of a limited diffusion state which is necessary to detect the air-fuel ratio. Applying an improved diffusion layer to decrease the diffusion rates and an improved electrode to increase the combustion rates, it is demonstrated that the detection limit can be expanded to λ=0.6 while that of a conventional sensor is λ=0.8.
Technical Paper

Stability Analysis of Engine Revolution by a Chassis and Powertrain Dynamics Simulator

This paper discusses causes and the mechanism of surging, back and forth chassis oscillation which occurs in cars with electronically controlled multi-point gasoline injection systems. This occurs during sharp acceleration, engine braking deceleration, and low speed coasting, at rather low ratio gear positions. We conclude that the mechanism of surging is parametric coupled oscillation. This conclusion is based on experimental data analysts and parameter sensitivity analysis using a chassis and engine dynamics simulator. The elements of parametric coupled oscillation are: a forcing system composed of engine control systems, engine and power transmission systems; a resonance system composed of axle and frame-body translation systems; a feedback system composed of axle translation systems and wheel revolution systems.
Technical Paper

Numerical Simulation System for Analyzing Fuel Film Flow in Gasoline Engine

A new numerical simulation system has been developed which predicts flow behavior of fuel film formed on intake port and combustion chamber walls of gasoline engines. The system consists of a film flow model employing film thickness as a dependent variable, an air flow model, and a fuel spray model. The system can analyze fuel film flow formed on any arbitrary three-dimensional configuration. Fuel film flow formed under a condition of continuous intermittent fuel injection and steady-state air flow was calculated, and comparison with experimental data showed the system possessing ability of qualitative prediction.
Technical Paper

Air Fuel Ratio Sensor and Its Signal Processing Module

This report describes the development of an air fuel ratio sensor with a linear voltage output, and its signal processing module that is able to calibrate the sensor output function on the measuring point of the 20.9% oxygen concentration in atmospheric air and the zero diffusion current at stoichiometry as the reference. This sensing system is effective when applied to air fuel ratio PID feed back engine control and it is able to realize the reduction of initial variability of sensors, interchangeability of sensors, and long term output change of the sensor.
Technical Paper

Mixture Formation of Fuel Injection Systems in Gasoline Engines

Mixture formation technology for gasoline engine multipoint fuel injection systems has been investigated. The fuel injector's spray, the volatility of droplets floating in the air flow, the movement of droplets around the intake valve's upper surface, the volatility of droplets on heated surfaces, and the process of atomizing droplets in the intake valve air flow was analyzed. Droplet diameters and spray patterns for good mixture formation without liquid film in cylinders have been clarified. When sequential injection is used for better responsiveness in fuel injection systems, engine performance may be reduced through increased HC emissions in some conditions. Reducing the diameter of spray droplets and preventing fuel from concentrating in the intake valve promotes vaporization, reduces fuel concentration on cylinder walls, and prevents reductions in engine performance.
Technical Paper

Engine Knock Detection Using Multi-Spectrum Method

High engine load and over-heated engine cylinder are the main causes of engine knock. When knock occurs in an engine, vibrations composed of several specific resonant frequencies occur. Some of these resonant frequencies are missed stochastically because specific resonant frequencies are caused by different resonant vibration modes in an engine cylinder. However, a conventional knock detector can only measure a fixed resonant frequency using a band-pass filter. This paper presents a multi-spectrum method which greatly improves knock detection accuracy by detecting the knock resonance frequencies from several specific vibration frequencies. Through overcoming the random occurrences of knock resonant frequencies by selecting specific frequencies, knock detection accuracy can be greatly improved. We studied a high precision knock detection method using real-time frequency analysis and a piezoelectric accelerometer on a V-6 engine.
Technical Paper

An Adaptive Engine Control Algorithm for Acceleration Response

Chassis back and forth oscillation caused by sudden engine torque increase tends to occur, according to the characteristic of vehicle dynamics. This oscillation is called an acceleration surge and gives a vehicle driver a feeling of discomfort. This paper provides two control methods which can change the characteristic of vehicle acceleration response in order to suppress acceleration surge and to macth with driver's preference. The first control method is an acceleration servo method which is composed of control reference model and ignition timing control. The second control method is a variable response characteristic control algorithm. We treat the controlled object as the second order model with time delay, and assign the characteristic roots of transfer function in order to obtain the desired response.
Technical Paper

Development of a Highly Accurate Air-Fuel Ratio Control Method Based on Internal State Estimation

A fuel injection control method is developed in which the transient air-fuel ratio is accurately controlled by an internal state estimation method with dynamic characteristics. With conventional methods the air-fuel ratio control precision is limited, because the air measurement system, the air and the fuel dynamic characteristics lack precision. In this development, the factors disturbing the air-fuel ratio under transient conditions are determined by analysis of the control mechanisms. The disturbance factors are found to be (1) the hot wire sensor has a delay time, (2) manifold air charging causes an overshoot phenomenon, (3) there is a dead time between sensing and fuel flow into the cylinder and (4) there is a delay of fuel flow into the cylinder caused by the fuel film. Compensation schemes are constructed for each of these technical problems.
Technical Paper

Wide-Range Air-Fuel Ratio Sensor, 1986

The oxygen ion conductive solid electrolyte cell served as a device for measuring the combustibles content and the oxygen content of an exhaust gas. The cell is comprised of a tubular electrolyte, two opposed electrodes and a porous diffusion layer located on the outer electrode surface. The sensor is employed to measure both rich and lean air fuel ratio through the use of an electronic circuit pumping the oxygen ions to achieve a constant voltage between the electrodes. The wide range detecting capability makes it particularly attractive for air fuel ratio control applications associated with the internal combustion engine. The result of the performance tests are as follows, Detecting range (air excess ratio λ) : 0.8 - “∞ Step response time constant (63%) : 200ms Warm up time. - less than 80 sec at 20°C We found in the durability test concerned with the heat cycle and contamination that if initial aging treatment is applied the output variation ratio (. λ/λ) is limited with in : 5%.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.