Refine Your Search

Topic

Search Results

Journal Article

Low Temperature Premixed Diesel Combustion with Blends of Ordinary Diesel Fuel and Normal Heptane

2015-11-17
2015-32-0754
Premixed diesel combustion blending high volatility fuels into diesel fuel were investigated in a modern diesel engine. First, various fractions of normal heptane and diesel fuel were examined to determine the influence of the blending of a highly ignitable and volatile fuel into diesel fuel. The indicated thermal efficiency improves almost linearly with increasing normal heptane fraction, particularly at advanced injection timings when the fuel is not injected directly into the piston cavity. This improvement is mainly due to decreases in the other losses, ϕother which are calculated with the following equation based on the energy balance. ηu: The combustion efficiency calculated from the exhaust gas compositions ηi: The indicated thermal efficiency ϕex: The exhaust loss calculated from the enthalpy difference between intake and exhaust gas The decreases in the other losses with normal heptane blends are due to a reduction in the unburned fuel which does not reach the gas analyzer.
Journal Article

Influence of Fuel Properties on Operational Range and Thermal Efficiency of Premixed Diesel Combustion

2013-10-15
2013-32-9054
The influence of fuel properties on the operational range and the thermal efficiency of premixed diesel combustion was evaluated with an ordinary diesel fuel, a primary reference fuel for cetane numbers, three primary reference fuels for octane numbers, and two normal heptane-toluene blend fuels in a single-cylinder DI diesel engine. The fuel injection timing was set at 25°CA BTDC and the maximum rate of pressure rise was maintained below 1.0 MPa/°CA when lowering the intake oxygen concentration by cooled EGR. With increasing octane numbers, the higher intake oxygen concentration can be used, resulting in higher indicated thermal efficiency due to a higher combustion efficiency. The best thermal efficiency at the optimum intake oxygen concentration with the ordinary diesel fuel is lower than with the primary reference fuels with the similar ignitability but higher volatility.
Journal Article

Combustion and Emissions with Bio-alcohol and Nonesterified Vegetable Oil Blend Fuels in a Small Diesel Engine

2012-10-23
2012-32-0017
Combustion and exhaust gas emissions of alcohol and vegetable oil blends including a 20% ethanol + 40% 1-butanol + 40% vegetable oil blend and a 50% 1-butanol + 50% vegetable oil blend were examined in a single cylinder, four-stroke cycle, 0.83L direct injection diesel engine, with a supercharger and a common rail fuel injection system. A 50% diesel oil + 50% vegetable oil blend and regular unblended diesel fuel were used as reference fuels. The boost pressure was kept constant at 160 kPa (absolute pressure), and the cooled low pressure loop EGR was realized by mixing with a part of the exhaust gas. Pilot injection is effective to suppress rapid combustion due to the lower ignitability of the alcohol and vegetable oil blends. The effects of reductions in the intake oxygen concentration with cooled EGR and changes in the fuel injection pressure were investigated for the blended fuels.
Journal Article

Improvement in DME-HCCI Combustion with Ethanol as a Low-Temperature Oxidation Inhibitor

2011-08-30
2011-01-1791
Port injection of ethanol addition as an ignition inhibitor was implemented to control ignition timing and expand the operating range in DME fueled HCCI combustion. The ethanol reduced the rate of low-temperature oxidation and consequently delayed the onset of the high-temperature reaction with ultra-low NOx over a wide operating range. Along with the ethanol addition, changes in intake temperature, overall equivalence ratio, and engine speed are investigated and shown to be effective in HCCI combustion control and to enable an extension of operation range. A chemical reaction analysis was performed to elucidate details of the ignition inhibition on low-temperature oxidation of DME-HCCI combustion.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Expansion of the Operating Range with In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine

2002-05-06
2002-01-1743
The control of fuel ignition timing and suppression of rapid combustion in a premixed charge compression ignition (PCCI) engine was attempted with direct in-cylinder injection of water as a reaction suppressor. The water injection significantly reduced the heat release at low temperature oxidation, which suppressed the increase in charge temperature after the low temperature oxidation and the rapid combustion caused by the high temperature oxidation. The possible engine operating range with ultra low NOx and smokeless combustion was extended to a higher load range with the water injection. Rapid combustion was suppressed by reductions in the maximum in-cylinder gas temperature due to water injection while the combustion efficiency suffered. Therefore, the maximum charge temperature needs to be controlled within an extremely limited range to maintain a satisfactory compromise between mild combustion and high combustion efficiency.
Technical Paper

Effect of Thermal Fatigue Phenomena of Aluminum Alloy by Artificial Aging

2002-03-04
2002-01-0584
The past efforts to develop aluminum alloy engine parts were focused on the formulation of chemical composition rather than the heat treatment conditions of aluminum alloys. Only a few studies have been made on optimizing heat treatment conditions. This paper deals with the effects of artificial aging on two aluminum alloys, A356 and A319, which have been often used for engine cylinder heads. The aluminum alloys were artificially aged under several different conditions after T6 heat treatment. The alloys were tested for such mechanical properties as pure tension, cyclic loading resistance and thermo-mechanical fatigue failure. The microstructure was observed by TEM to see the effects on microstructure in terms of mechanical properties.
Technical Paper

Thermal Plastic-elastic Creep Analysis of Engine Cylinder Head

2002-03-04
2002-01-0585
Critical for the use of aluminum alloys for cylinder heads are strength and durability. In our study, the mechanism of the low cycle fatigue and creep was clarified based on the mechanical properties of aluminum alloys, such as tensile, compressive, thermal fatigue and creep characteristics, which were determined by conducting tests on test pieces. The behavior of a cylinder head under cyclic thermal condition was represented by using a high-precision analysis method with cyclic creep taken into consideration. Moreover, the high-precision analysis method turned out to be effective in estimating a low cycle fatigue life under the cyclic thermal condition.
Technical Paper

Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results

1992-02-01
920465
This paper presents a theoretical and experimental study on the possibility of combustion similarity in differently sized diesel engines. Combustion similarity means that the flow pattern and flame distribution develop similarly in differently sized engines. The study contributes to an understanding and correlating of data which are presently limited to specific engine designs. The theoretical consideration shows the possibility of combustion similarity, and the similarity conditions were identified. To verify the theory, a comparison of experimental data from real engines was performed; and a comparison of results of a three dimensional computer simulation for different engine sizes was also attempted. The results showed good agreement with the theoretical predictions. THE PURPOSE of this research is to determine the possibility of the existence of combustion similarity in differently sized diesel engines, and to propose conditions for realizing model experiments.
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Inelastic Behavior and Low Cycle Fatigue of Aluminum Alloy Subjected to Thermo-Mechanical Loading

1998-02-01
980688
Many methods for estimating the fatigue life of an aluminum alloy have been proposed in order to save development time and cost as demand for durable and light-weighted material grows strong. None of them, however, are practical enough to estimate the life of an engine component because thermal and mechanical loads on the engine component change as time elapses. Firstly, this paper deals with a method for clarifying the inelastic characteristics of an aluminum alloy, especially the effects of strain amplitude, ductile period (compression-tension cycle time) and temperature range on inelastic deformation, by making experiment where both thermal and mechanical loads were applied in the inverted phase(‘out-of phase’). Secondly the paper discusses a possibility of improving accuracy in determining the fatigue life of the material by introducing a new index of ‘plastic work density per second’, which is based on the conventional concept of plastic strain energy density.
Technical Paper

An Investigation on the Simultaneous Reduction of Particulate and NOx by Controlling Both the Turbulence and the Mixture Formation in DI Diesel Engines

1993-10-01
932797
This paper presents experimental results of the reduction of both particulate and NOx emitted from direct injection diesel engines by a two stage combustion process. The primary combustion is made very rich to reduce NOx and then the particulate is oxidized by strong turbulence generated during the secondary combustion. The rich mixture is formed by low pressure fuel injection and a small cavity combustion chamber configuration. The strong turbulence is generated by a jet of burned gas from an auxiliary chamber installed at the cylinder head. The results showed that NOx was reduced significantly while maintaining fuel consumption and particulate emissions. An investigation was also carried out on the particulate reduction process in the combustion chamber with the turbulence by gas sampling and in-cylinder observation with an optical fiber scope and a high speed camera.
Technical Paper

Time Series Analysis of Diesel Exhaust Gas Emissions Under Transient Operation

1993-03-01
930976
Time series analysis of diesel exhaust gas emissions under transient operation was carried out using a uniquely developed gas sampling system to efficiently collect all exhaust gas throughout transient cycles. The effects of fuel properties and other engine operation parameters on the exhaust emissions under transient runs when fuel amounts abruptly increase were analyzed. The results showed that THC increased abruptly to 2 or 6 times the final steady-state concentration immediately after the start of acceleration and then decreased to the steady-state values after 70∼200 cycles. At acceleration, NOx increased abruptly to about 80 % of the final NOx concentration, and then increased gradually to reach the final values after 60∼500 cycles. The behaviors of THC and NOx during transient operation can be described by exponential functions of the elapsed cycle numbers and the final emission concentrations.
Technical Paper

Combustion and Emissions in a New Concept DI Stratified Charge Engine with Two-Stage Fuel Injection

1994-03-01
940675
A new concept DISC engine equipped with a two-stage injection system was developed. The engine was modified from a single cylinder DI diesel engine with large cylinder diameter (135mm). Combustion characteristics and exhaust emissions with regular gasoline were examined, and the experiments were also made with gasoline-diesel fuel blends with higher boiling temperatures and lower octane numbers. To realize stratified mixture distribution in combustion chamber flexibly, the fuel was injected in two-stages: the first stage was before the compression stroke to create a uniform premixed lean mixture and the second stage was at the end of the compression stroke to maintain stable ignition and faster combustion. In this paper, the effect of the two-stage injection on combustion and exhaust emissions were analyzed under several operating conditions.
Technical Paper

Improvement of Performance and Emissions of a Compression Ignition Methanol Engine with Dimethyl Ether

1994-10-01
941908
Dimethyl ether (DME) has very good compression ignition characteristics, and can be converted from methanol using a γ - alumina catalyst. A previous report investigated a compression ignition methanol engine with DME as an ignition improver. The results showed that the engine operation was sufficiently smooth without either spark or glow plugs. Two methods were studied, one was an aspiration method, and the other was a torch ignition chamber method (TIC method). The aspiration method allows a simple engine structure, but suffers from poor engine emissions and requires large amounts of DME. With the TIC method where the DME was introduced into a torch ignition chamber (TIC) during the intake stroke, the diffusion of the DME into the main combustion chamber was limited, and significant reductions in both the necessary quantity of DME and emissions were obtained [1][2].
Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Theory and Experiments on Air-Entrainment in Fuel Sprays and Their Application to Interpret Diesel Combustion Processes

1995-02-01
950447
This paper presents a theory and its experimental validation for air entrainment changes into fuel sprays in DI diesel engines. The theory predicts air entrainment changes for a variety of swirl speeds, number of nozzle holes, nozzle diameters, engine speeds, injection speeds and fuel densities. The formulae of the theory are simple non-dimensional equations, which apply for different sized engines. Experiments were performed to compare theoretical predictions and experimental results in six different engines varying from 85 to 800mm bore. All results showed good agreement with the theoretical predictions for shallow-dish piston engines. However the agreement became poor in the case of deep cavity piston engines. With the theory, it is possible to interpret a variety of combustion phenomena in diesel engines, providing additional understanding of diesel combustion processes.
Technical Paper

Time-Resolved Nature of Exhaust Gas Emissions and Piston Wall Temperature Under Transient Operation in a Small Diesel Engine

1996-02-01
960031
Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.
Technical Paper

Study on Exhaust Control Valves and Direct Air-Fuel Injection for Improving Scavenging Process in Two-Stroke Gasoline Engines

1996-02-01
960367
A critical factor in improving performance of crankcase-scavenged two-stroke gasoline engines is to reduce the short-circuiting of the fresh charge to the exhaust in the scavenging process. To achieve this, the authors developed a reciprocating exhaust control valve mechanism and direct air-fuel injection system. This paper investigates the effects of exhaust control valve and direct air-fuel injection in the all aspect of engine performance and exhaust emissions over a wide range of loads and engine speeds. The experimental results indicate that the exhaust control valve and direct air-fuel injection system can improve specific fuel consumption, and that HC emissions can be significantly reduced by the reduction in fresh charge losses. The pressure variation also decreased by the improved combustion process. CRANKCASE SCAVENGED two-stroke gasoline engines suffer from fresh charge losses leading to poor fuel economy and it is a reason for large increases of HC in the exhaust.
Technical Paper

In-Cylinder Control of Smoke and NOx by High Turbulent Two-Stage Combustion in Diesel Engines

1996-10-01
962113
The authors have previously reported significant reductions in particulate emissions by generating strong turbulence during the combustion process. Extending this, it was attempted to reduce NOx, particulate, and fuel consumption simultaneously by two-stage combustion: forming a fuel rich mixture at the initial combustion stage to prevent NOx formation, and inducing strong turbulence in the combustion chamber at the later stage of combustion to oxidize the particulate. The purpose of this study is to examine the effect of two-stage combustion in emission control. The paper gives an evaluation of the NO reaction-kinetics of the system and experimental results for a combustion chamber specially made for the two-stage combustion. With this combustion system, it was possible to reduce NOx levels to 1/3 of the base engine. Combination of EGR and the two-stage combustion was also examined.
X