Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Technical Paper

Study and Application of Prediction Method for Low Frequency Road Noise

2010-04-12
2010-01-0507
When a vehicle drives over road seams or a bumpy surface, low-frequency noise called drumming is generated, causing driver discomfort. The generation of drumming noise is closely related to the vibration characteristics of the suspension, body frame, and body panels, as well as the acoustic characteristics of the vehicle interior. It is therefore difficult to take measures to get rid of drumming after the basic vehicle construction has been finalized. Aiming to ensure drumming performance in the drawing review phase, we applied the Finite Element Method (FEM) to obtain acoustical transfer functions of the body, and Multi Body Simulation to get suspension load characteristics. This paper presents the results of the study of drumming prediction technology using this hybrid approach.
Technical Paper

Formulation of Model for Estimation of Battery Capacity Degradation Based on Usage History

2013-04-08
2013-01-0501
As the electric vehicle (EV) market expands and we enter the period of fully fledged diffusion of the vehicles, evaluation of battery performance when secondhand vehicles are sold and when batteries are put to alternative uses will become increasingly important. However, the accurate measurement of battery performance for the purpose of battery evaluation represents a challenge when the batteries are fitted in a battery pack consisting of multiple cells. The authors therefore formulated a degradation estimation model for the evaluation of battery performance based on battery usage history. To formulate the model, parameters expressing the internal state of the battery are estimated from the battery's usage history; battery capacity is estimated with consideration of these parameters.
Technical Paper

Development of an On-Board Analyzer for Use on Advanced Low Emission Vehicles

2000-03-06
2000-01-1140
Measuring the real-world performance of emission control technologies is an important aspect in the development of advanced low-emission vehicles. In addition, data acquired from such measurements can be used to improve the accuracy of air quality predictive models. Honda has developed an on-board sampling/analysis system capable of measuring on-road emissions at ULEV levels and below. Ambient air can be analyzed simultaneously. This FTIR-based system can measure several species; this paper will focus on NMHC, NOX, and CO. Techniques were developed to address the challenges associated with acquiring accurate real-time data at concentrations below 1 ppm in an on-road vehicle. Validation studies performed with reference gases and vehicle exhaust indicate a very good correlation between the on-road analyzer system and classic bench methods for all target compounds. Dynamic studies performed by the University of California, Riverside, also show good correlation.
Technical Paper

The Development of Brake Feel with Variable Servo Ratio Control

2015-09-27
2015-01-2696
We had developed Electric Servo Brake System, which can control brake pressure accurately with a DC motor according to brake pedal force. Therefore, the system attains quality brake feeling while reflecting intentions of a driver. By the way, “Build-up” is characteristics that brake effectiveness increases in accordance with the deceleration of the vehicle, which is recognized as brake feeling with a sense of relief as not to elongate an expected braking distance at a downhill road due to large-capacity brake pad such as sports car and large vehicles. Then, we have applied the optical characteristic control to every car with Electric Servo Brake System by means of brake pressure control but not brake pad. Hereby, we confirmed that the control gives a driver the sense of relief and the reduction of pedal load on the further stepping-on of the pedal. In this paper, we describe the development of brake feel based on the control overview.
Technical Paper

Potential Improvements to Impact Responses of the Flexible Legform Impactor

2014-04-01
2014-01-0520
The validity of evaluating FlexPLI peak injury measures has been shown by the correlation of the peak measures between a human FE model and a FlexPLI FE model. However, comparisons of tibia bending moment time histories (BMTHs) between these models show that the FlexPLI model exhibits a higher degree of oscillatory behavior than the human model. The goal of this study was to identify potential improvements to the FlexPLI such that the legform provides more biofidelic tibia BMTHs at the normal standing height. Impact simulations using a human FE model and a FlexPLI FE model were conducted against simplified vehicle models to compare tibia BMTHs. The same series of impact simulations were conducted using the FlexPLI models that incorporated potential measures to identify measures effective for further enhancement of the biofidelity. An additional analysis was also conducted to investigate the key factor for minimizing the oscillation of the tibia BMTH.
Journal Article

Anisotropic Material Damage Model of Randomly Oriented Thermoplastic Composites for Crash Simulation

2020-04-14
2020-01-1305
In this research, a material model was developed that has orthotropic properties with respect to in-plane damage to support finite element strength analysis of components manufactured from a randomly oriented long-fiber thermoplastic composite. This is a composite material with randomly oriented bundles of carbon fibers that are approximately one inch in length. A macroscopic characteristic of the material is isotropic in in-plane terms, but there are differences in the tension and compression damage properties. In consideration of these characteristics, a material model was developed in which the damage evolution rate is correlated with thermodynamic force and stress triaxiality. In-plane damage was assumed to be isotropic with respect to the elements. In order to validate this material model, the results from simulation and three-point bending tests of closed-hat-section beams were compared and found to present a close correlation.
Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

Honda Fuel Cell Electric Vehicle Development

2011-05-17
2011-39-7240
Honda has been taking measures since the late 1990s to address three issues raised by the automobile, from air pollution, which was already a matter of regulation, to the additional issues of global warming and energy. With observation of recent trends in society, what had been our concern about these three matters appears to have gradually been turning into certainty instead. Meanwhile, the demand for automobiles is expected to increase with the population growth in newly emerging countries, economic growth, and other such factors. At present, with automobiles dependent on oil for the greater part of their energy, it has become a challenge to secure a stable supply of reasonably priced oil while the global warming perspective requires reduction of CO2 emissions. This article will review the history of development of the fuel cell vehicle (FCV) equipped with the next-generation power plant capable of simultaneously providing the solutions demanded for all three automobile issues.
X