Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Estimation for Strain in Damages of Motorcycle Engine Parts When Tipped Over from Stationary State

2013-10-15
2013-32-9096
In this research, a simulation method was developed in which it was able to estimate, in the early stage of design, the strains that potentially lead to damages to motorcycle engine parts when tipped over from a stationary state. Splitting a series of phenomena from the start of tilting of motorcycle from the upright position up to the end of collision of engine parts after the contact on the ground to two groups by before and after the contact of engine parts on the ground, we applied the multi body dynamics analysis to the first group, and the elastro-plastic FEM analysis to the latter one. In the computer simulation of collision using the elastro-plastic FEM analysis, we minimized the FEM models from the entire motorcycle models and treated others as a solid model to shorten the computation period. It is also realized that the strains occurring in the engine parts can be simulated by considering only the mass of the parts which are rigidly mounted on the engine.
Journal Article

Consideration about Meshing of Worm Gear Based on MUB (Meshing Under Base-Circle) Theory for EPS

2014-04-01
2014-01-0058
This paper will discuss the stress reduction of the worm wheel for an electric power steering (EPS) system. The research discussed in this paper focused on the worm wheel, the EPS component that determines the maximum diameter of the system. If the stress of the worm wheel could be reduced without increasing in size, it would be possible to reduce the size of the worm wheel and EPS system. In order to reduce the stress of the worm wheel, the conventional design method has extended the line-of-action toward outside of the worm wheel to increase the contact ratio of the gears and these method lead to an increase in the outer diameter. In order to address this issue, past research proposes the basic concept to extend line-of-action toward the inside of the worm wheel. And this new meshing theory was named MUB (Meshing Under Base-circle) theory. In this paper, characteristics of meshing of the gear formed by MUB theory are determined in more detail.
Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley Part 1: Measurement Using Micro Data Logger System and Thin-Film Sensor

2014-04-01
2014-01-1732
In order to reduce friction and predict wear of the sliding part, it is important to determine the oil film thickness of particular area. A sensor or similar device must be attached to the sliding surface to detect the oil film thickness. However, a sensor could not be attached, due to the lack of space on contact surface, and moreover there was no method to secure the sensor on contact surface at that time. A several-micrometer-thin-film sensor was installed on a sliding surface to attempt measurement, but since the sensor was attached on a contact surface, wear occurred immediately and data was unable to be obtained. To accomplish above issue, we developed a protective layer with excellent wear-resistance that successfully extended the measurement time by protecting the thin-film sensor.
Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley - Part 2: Oil Film Thickness Calculation Based on EHL Theory

2014-04-01
2014-01-1731
In order to maintain the performance of push belt Continuously Variable Transmissions (CVT) over a long period of time, it is important to acquire a fundamental understanding of lubrication performance between a pulley and a metal V-belt. This work examined oil film thickness using the contact pressure on a sliding surface of pulley sheave during driving, which was obtained with an uniquely developed measurement technique. The contact between a belt element and a pulley sheave was treated as a group of small elliptical contact zones. The pressure-viscosity characteristics of lubricant were assigned to Reynolds equation with Roelands experimental formula. Also, in order to increase convergence of the calculation, a multigrid method was used. Calculation results indicate that the oil film thickness at a peak contact pressure measured was approximately 0.3-0.4 μm.
Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Establishment of Performance Design Process for Vehicle Sound-Roof Packages Based on SEA Method

2015-04-14
2015-01-0664
The process for setting the marketability targets and achievement methods for automotive interior quietness (as related to air borne noise above 400Hz, considered the high frequency range) was established. With conventional methods it is difficult to disseminate the relationship between the performance of individual parts and the overall vehicle performance. Without new methods, it is difficult to propose detailed specifications for the optimal sound proof packages. In order to make it possible to resolve the individual components performance targets, the interior cavity was divided into a number of sections and the acoustic performance of each section is evaluated separately. This is accomplished by evaluating the acoustical energy level of each separate interior panel with the unit power of the exterior speaker excitation. The applicability of the method was verified by evaluating result against predicted value, using the new method, during actual vehicle operation.
Journal Article

Development of Tool for Evaluation of Automotive Conformity of FM Receivers Using Two-Stage Method

2015-04-14
2015-01-0225
The suitability of FM radio receivers for automotive applications has conventionally been evaluated by evaluating the reception characteristics of broadcast waves while conducting repeated driving tests in a special test environment. Because the evaluation of sound quality while driving relies upon the auditory judgment of a limited range of test subjects, these tests present issues in terms of the reproducibility and objectivity of the evaluations. In order to resolve these issues, a method of evaluating the suitability of FM receivers for automotive applications through the creation of a virtual radio wave environment on a PC was developed (this has been termed the “Two-Stage method”). In the research described in this paper, the Two-Stage method was used to analyze the effect of multipath distortion on FM receivers when driving through arbitrary radio wave propagation environments.
Journal Article

Estimation of the Incoming Wave Characteristics by MUSIC Method Using Virtual Array Antenna

2015-04-14
2015-01-0222
Traditionally, the suitability of radio receivers and similar devices for automotive use has been evaluated by evaluating their reception characteristics in relation to transmitted waves via repeated driving tests. This method of evaluation presents issues in terms of reproducibility and objectivity. A method of evaluating the suitability of FM receivers for vehicle fitting using a virtual propagation environment created on a PC (termed the Two-Stage method) has been developed in order to address these issues. The major challenge in the Two-Stage method is the creation of an actual propagation environment on a PC. A test-based incoming wave estimation technology able to accurately estimate the characteristics of actual propagation environments is therefore essential. The estimation of incoming FM waves necessitates large array antennas. In addition, the incoming waves become coherent multipath waves.
Journal Article

Technique for Predicting Powertrain Self-Excited Vibration at Vehicle Start-Up

2015-04-14
2015-01-1674
A clutch FEM model was created to quantitatively understand the operation and dynamic friction characteristics of the facing materials. And a simulation model for dynamic behavior analysis of the torque transmission characteristics from a transmission that incorporates drivetrain damping characteristics to the vehicle body was constructed. The data of the actual vehicle was also measured when vibration occurs and loss torque is generated by friction in the drivetrain, and damping characteristics were determined from the measurement values. In order to confirm the usefulness of this method, the construction of a clutch that suppresses self-excited vibration was examined by simulation and the reduction of vibration in an actual vehicle was confirmed.
Journal Article

Development of State of the Art Compact and Lightweight Thermoelectric Generator Using Vacuum Space Structure

2015-04-14
2015-01-1691
Exhaust heat recovery units that use a thermoelectric element generate electricity by creating a temperature difference in the thermoelectric element by heating one side and cooling the other side of the thermoelectric circuit (module). In this case, the general structure does not directly join the thermoelectric module with the heat sink, and instead presses the thermoelectric module against the heat sink using bolts or other means in order to prevent thermoelectric element damage due to the difference in linear expansion between the cooled and heated sides of the thermoelectric module. However, this poses the issues associated with a complex, heavy and expensive structure. Therefore, a new vacuum space structure was devised that houses the thermoelectric module in a vacuum chamber and presses the module against the heat sink using atmospheric pressure.
Journal Article

Development of a Compact Ultra-Flat Torque Converter Equipped with a High-Performance Damper

2015-04-14
2015-01-1088
By optimizing parameters related to damping performance and adopting a layout that incorporates the turbine into the damper components, a “Turbine Twin-Damper” lock-up damper was developed that achieves both damping performance and compactness. To reduce losses in the fluid flow channel, a smaller torus was developed that reduce the width of the torus by about 30%.Through the combination of this Turbine Twin-Damper and smaller torus, attenuation of the torque fluctuation transmitted to the transmission to 1/2 or less compared to a conventional product was achieved without increasing the overall width of the torque converter. As a result, the engine speed at cruise fell by 400rpm, and fuel economy improved.
Journal Article

Vibration Reduction in Motors for the SPORT HYBRID SH-AWD

2015-04-14
2015-01-1206
A new motor has been developed that combines the goals of greater compactness, increased power and a quiet drive. This motor is an interior permanent magnet synchronous motor (IPM motor) that combines an interior permanent magnet rotor and a stator with concentrated windings. In addition, development of the motor focused on the slot combination, the shape of the magnetic circuits and the control method all designed to reduce motor noise and vibration. An 8-pole rotor, 12-slot stator combination was employed, and a gradually enlarged air gap configuration was used in the magnetic circuits. The gradually enlarged air gap brings the centers of the rotor and the stator out of alignment, changing the curvature, and continually changing the amount of air gap as the rotor rotates. The use of the gradually enlarged air gap brings torque degradation to a minimum, and significantly reduces torque fluctuation and iron loss of rotor and stator.
Journal Article

Degradation Analysis of Pouch Cell Using High-Energy Cathode Material for Advanced Lithium-ion Battery

2015-04-14
2015-01-1193
Lithium-rich layered oxide, expressed as xLi2MnO3-(1-x) LiMO2 (M = Ni, Co, Mn, etc.), exhibits a high discharge capacity of 200 mAh/g or more and a high discharge voltage at a charge of 4.5 V or more. Some existing reports on cathode materials state that lithium-rich layered oxide is currently the most promising candidate as an active material for high-energy-density lithium-ion cells, but there are few reports on the degradation mechanism. Therefore, this study created a prototype cell using a lithium-rich layered cathode and a graphite anode, and analyzed the degradation mechanism due to charge and discharge. In order to investigate the causes of degradation, changes in the bulk structure and surface structure of the active material were analyzed using high-resolution X-ray diffraction (HRXRD), a transmission electron microscope (TEM), X-ray absorption fine structure (XAFS), and scanning electron microscope/energy dispersive X-ray spectroscopy (SEM-EDX).
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Journal Article

Concept for Improving Cost Effectiveness of Thermoelectric Heat Recovery Systems

2016-04-05
2016-01-0233
The practical application of heat recovery using thermoelectrics requires the realization of reasonable cost effectiveness. Therefore, a thermoelectric generator (TEG) structure that can compatibly increase efficiency and reduce cost was investigated with the aim of enhancing cost effectiveness. To increase efficiency, a method of using a vacuum space structure to reduce the TEG size was investigated to enable installation just after the close-coupled catalyzer, which is subject to many space restrictions. It was found that by making it possible to use high temperature exhaust heat, power generation efficiency can be increased to approximately twice that of the typical under floor installation. In addition, coupled simulation of heat transfer and power generation using FEM, 1D cost effectiveness simulations, and bench tests were performed with the aim of reducing cost.
Journal Article

Development of Electric Powertrain for CLARITY PLUG-IN HYBRID

2018-04-03
2018-01-0415
Honda has developed the 2018 model CLARITY PLUG-IN HYBRID. Honda’s new plug-in hybrid is a midsize sedan and shares a body platform with the CLARITY FUEL CELL and the CLARITY ELECTRIC. The vehicle’s electric powertrain boosts driving performance as an electric vehicle (EV) over Honda’s previous plug-in hybrid. The CLARITY PLUG-IN HYBRID’s electric powertrain consists of a traction motor and generator built into the transmission, a Power Control Unit (PCU) positioned above the transmission, an Intelligent Power Unit (IPU) fitted under the floor, and an onboard charger fitted below the rear trunk. The PCU integrates an inverter that drives the traction motor, an inverter that drives the generator, and a DC-DC converter to boost battery voltage (referred to as a “Voltage Control Unit (VCU)” below).
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Journal Article

Strength Analysis of a Cylinder Head Gasket Using Computer Simulation

2009-04-20
2009-01-0197
The properties sought in a multi-layer steel cylinder head gasket include cylinder pressure sealing and fatigue strength in order for there to be no damage while the engine is in operation. Diesel engines, in particular, have high cylinder pressure and a high axial tension by the cylinder head bolt demanding severe environment to the gaskets. As engine performance is enhanced, there are cases when cracks develop in the gasket plate, necessitating countermeasures. The cause of cracking in a flat center plate, in particular, has not yet been explained, and no method for evaluation had previously existed. Three-dimensional non-linear finite element calculation was therefore performed to verify the cause. First, a static pressurization rig test was used and the amount of strain was measured to confirm the validity of the calculations. Then the same method of calculation was used to verify the distribution of strain, with a focus on the plate position.
Journal Article

Multi-Variable Air-Path Management for a Clean Diesel Engine Using Model Predictive Control

2009-04-20
2009-01-0733
Recently, emission regulations have been strict in many countries, and it is very difficult technical issue to reduce emissions of diesel cars. In order to reduce the emissions, various combustion technologies such as Massive EGR, PCCI, Rich combustion, etc. have been researched. The combustion technologies require precise control of the states of in-cylinder gas (air mass flow, EGR rate etc.). However, a conventional controller such as PID controller could not provide sufficient control accuracy of the states of in-cylinder gas because the air-pass system controlled by an EGR valve, a throttle valve, a variable nozzle turbo, etc. is a multi-input, multi-output (MIMO) coupled system. Model predictive control (MPC) is well known as the advanced MIMO control method for industrial process. Generally, the sampling period of industrial process is rather long so there is enough time to carry out the optimization calculation for MPC.
X