Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Journal Article

Development of Temperature Estimation Method of Whole Engine Considering Heat Balance under Vehicle Running Conditions

For detailed temperature estimates in the engine of a running motorcycle, newly researches were conducted on the method for calculation of temperature distribution using a three-dimensional (3D) thermal conductivity simulation after calculating the total balance of heat generation and heat dissipation of the engine using a one-dimensional (1D) thermal simulation. This project is targeted at air-cooled engines in which the cooling conditions vary significantly depending on the external shapes of the engines and the airflow around them. The heat balance is calculated using the 1D thermal simulation taking into account all the routes and processes for dissipation to the atmosphere of the heat that is generated by the combustion in the engine. The 1D engine cycle simulation is applied to calculate the heat transmission to the engine from the combustion. For the calculation of heat transfer within the engine, the engine components are converted to a one-dimensional model.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Journal Article

Concept for Improving Cost Effectiveness of Thermoelectric Heat Recovery Systems

The practical application of heat recovery using thermoelectrics requires the realization of reasonable cost effectiveness. Therefore, a thermoelectric generator (TEG) structure that can compatibly increase efficiency and reduce cost was investigated with the aim of enhancing cost effectiveness. To increase efficiency, a method of using a vacuum space structure to reduce the TEG size was investigated to enable installation just after the close-coupled catalyzer, which is subject to many space restrictions. It was found that by making it possible to use high temperature exhaust heat, power generation efficiency can be increased to approximately twice that of the typical under floor installation. In addition, coupled simulation of heat transfer and power generation using FEM, 1D cost effectiveness simulations, and bench tests were performed with the aim of reducing cost.
Technical Paper

Study on the Cooling Method of Car Engine Pistons - Part 1, Basic Test for Achieving High Heat Transfer Coefficient

Car engine piston cooling is an important technology for improving the compression ratio and suppressing the deformation of pistons. It is well known that thermal conductivity improves dramatically through the use of heat pipes in computers and air conditioners. However, the heat pipes in general use have not been used for the cooling of engines because the flow of gas and liquid is disturbed by vibration and the thermal conductivity becomes excessively low. We therefore developed an original heat pipe and conducted an experiment to determine its heat transfer coefficient using a high-speed reciprocation testing apparatus. Although the test was based on a single heat pipe unit, we succeeded in improving the heat transfer coefficient during high-speed reciprocation by a factor of 1.6 compared to the heat transfer coefficient at standstill. This report describes the observed characteristics and the method of verification.
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Technical Paper

Integrated Cooling System for Underfloor High Voltage Devices in PHEV

Compared to conventional hybrid electric vehicles, plug-in hybrid vehicles have a larger-capacity battery and an onboard charger. These devices are mounted in functionally optimal locations, so it is a challenge to provide a thermal management system that achieves a good balance between high cooling performance and low cost. The battery should be operated at required temperature to secure safety and durability at high temperatures, and to mitigate the decrease in output power and capacity. However, setting separate cooling systems suited for each device leads to both an increased cost and weight. Therefore, an integrated water cooling system was devised for the battery, charger, and DC-DC converter, and the cooling performance was verified through simulations and tests. A valve installed before the battery in the cooling circuit allows it to be bypassed when coolant temperature rises due the charger or low-speed engine operation, helping to preserve battery life.
Technical Paper

Development of Cooling Fan Model and Heat Exchange Model of Condenser to Predict the Cooling and the Heat Resistance Performance of Vehicle

The cooling performance and the heat resistance performance of commercial vehicle are balanced with aerodynamic performance, output power of powertrain, styling, cost and many other parameters. Therefore, it is desired to predict the cooling performance and the heat resistance performance with high accuracy at the early stage of development. Among the three basic forms of heat transfer (conduction, convection and radiation), solving thermal conduction accurately is difficult, because modeling of “correct shape” and setting of coefficient of thermal conductivity for each material need many of time and efforts at the early stage of development. Correct shape means that each part should be attached correctly to generate the solid mesh with high quality. Therefore, it is more efficient and realistic method to predict the air temperature distribution around the rubber/resin part instead of using the surface temperature at the preliminary design stage.
Technical Paper

Powertrain Thermal System Development for Small BEV

The dynamic performance of battery electric vehicles (BEV) is affected by battery output power, which depends on state of charge (SOC) and the temperature of battery cells. The temperature of the batteries varies in particular with the environment, in which the user stores the vehicle, and the battery output power. It is therefore necessary to employ thermal management systems that can control the battery temperature within the optimal range under severely hot and cold conditions in BEVs. A highly sophisticated thermal management system and its operation strategy were developed to fulfill the above requirements. The powertrain components to be thermo-controlled were located into two coolant circuits having different temperature range. The compact and efficient front-end heat exchangers were designed to optimally balance the cooling performance of powertrain, cabin comfort, vehicle aerodynamics and the vehicle design.