Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

The Thermal and Aerodynamic Development of a Cooling and Heat Resistance Package for a New Hybrid Sports Car

2015-04-14
2015-01-1526
A sports car exhibits many challenges from an aerodynamic point of view: drag that limits top speed, lift - or down force - and balance that affects handling, brake cooling and insuring that the heat exchangers have enough air flowing through them under several vehicle speeds and ambient conditions. All of which must be balanced with a sports car styling and esthetic. Since this sports car applies two electric motors to drive front axle and a high-rev V6 turbo charged engine in series with a 9-speed double-clutch transmission and one electric motor to drive rear axle, additional cooling was required, yielding a total of ten air cooled-heat exchangers. It is also a challenge to introduce cooling air into the rear engine room to protect the car under severe thermal conditions. This paper focuses on the cooling and heat resistance concept.
Journal Article

Strength Analysis of a Cylinder Head Gasket Using Computer Simulation

2009-04-20
2009-01-0197
The properties sought in a multi-layer steel cylinder head gasket include cylinder pressure sealing and fatigue strength in order for there to be no damage while the engine is in operation. Diesel engines, in particular, have high cylinder pressure and a high axial tension by the cylinder head bolt demanding severe environment to the gaskets. As engine performance is enhanced, there are cases when cracks develop in the gasket plate, necessitating countermeasures. The cause of cracking in a flat center plate, in particular, has not yet been explained, and no method for evaluation had previously existed. Three-dimensional non-linear finite element calculation was therefore performed to verify the cause. First, a static pressurization rig test was used and the amount of strain was measured to confirm the validity of the calculations. Then the same method of calculation was used to verify the distribution of strain, with a focus on the plate position.
Technical Paper

Resource-conserving, Heat-resistant Ni-based Alloy for Exhaust Valves

2009-04-20
2009-01-0259
Conventionally, the Ni-based superalloys NCF3015 (30Ni-15Cr) and the high nickel content NCF440 (70Ni-19Cr) (with its outstanding wear resistance and corrosion resistance), have been used as engine exhaust valve materials. In recent years, automobile exhaust gases have become hotter because of exhaust gas regulations and enhanced fuel consumption efficiency. Resource conservation and cost reductions also factor into global environmental challenges. To meet these requirements, NCF5015 (50Ni-15Cr), a new resource-conserving, low-cost Ni-based heat-resistant alloy with similar high-temperature strength and wear resistance as NCF440, has been developed. NCF5015's ability to simultaneously provide wear resistance, corrosion resistance and strength when NCF5015 is used with diesel engines was verified and the material was then used in exhaust valves.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Development of Compact Fuel Pump Module for Motorcycles

2008-09-09
2008-32-0039
A compact, low-cost fuel pump module has been developed for use in motorcycles with a small-displacement engine. Various considerations are given to make the module as compact as possible. The pump motor, which is one of the major component parts, is down-sized specifically for applications to small-displacement engines. The pressure regulator uses a simple construction consisting only of a ball and a spring without a diaphragm. Especially noteworthy is that with the volume reduced by approximately 40% from the conventional pressure regulator while using the construction that reduces self-excited vibrations caused by fuel pressure pulsations, the pressure regulator contributes significantly to the down-sizing and cost reduction of the module. Furthermore, the down-sized module remarkably reduces the size of fuel pump mount surface, allowing a modification from the flat-surface sealing to the radial sealing.
Technical Paper

Development of High-Heat-Resistant High-Nitrogen Containing Austenitic Stainless Steel for Exhaust Gasket

2004-03-08
2004-01-0890
SUS301-EH is widely used as a material for exhaust system gaskets, however, at temperatures in excess of 400°C, it can not be used as gas-seal ability of the material declines due to its reduced hardness. The following methods were found to be effective in controlling the softening of stainless steel at high temperatures: (1) The addition of a nitrogen component; (2) Stabilization of the austenite structure; (3) The addition of a molybdenum component. The addition of 0.5% nitrogen to austenitic stainless steel containing molybdenum has enabled the speed of softening at high temperatures to be significantly reduced, due to strain aging by solid nitrogen below 600°C and the combined effects of precipitation hardening and control of growth of recrystallized grains through the precipitation of fine Cr2N on the dislocations and the grain boundary above 600°C.
Technical Paper

Improvement of Heat Resistance for Lean NOx Catalyst

2004-03-08
2004-01-1495
When the alkali metal-supported catalyst was treated at 830°C, the NOx conversion decreased because the alkali metals in the catalyst layer gradually moved to the cordierite honeycomb layer and reacted with the cordierite elements. This phenomena decreased to be added the basic metal oxide (α) in the catalyst layer. The improved catalyst with α 2 showed higher performance than the conventional catalyst in the model gas test. Moreover, the emission values of NOx, HC, and CO were 50% or less than Japanese domestic regulation values even after 830°C×60h heat treatment in a vehicle test.
Technical Paper

Development of Non - asbestos Gasket Material

1991-11-01
912542
In the consideration of safety to health, many countries have recently been enforsing regulations on the use of asbestos. To keep abreast of this trend, it has become necessary to replace the gasket materials currently used in the cases and the covers of motorcycle engines with non-asbestos materials. The gaskets used in motorcycles are subjected to extremely severe sealing loads and temperature in the small and high performance engines. They are required to have excellent sealability and creep relaxation characteristics at high temperature. Under such conditions, it is extremely difficult to substitute non-asbestos materials for asbestos which has superb material characteristics such as higher heat resistance and greater aspect ratio (length of fiber/dia.).
Technical Paper

Development of Aluminum Powder Metallurgy Composites for Cylinder Liners

1994-03-01
940847
There are several all-aluminum cylinder blocks. A typical example is a mono-block cylinder of alusil alloy produced by low pressure die casting. This material's resistance to abrasion and seizure, however, is not satisfactory for motorcycle; in addition, long processing time is another disadvantage. To cope with these problems, the authors developed a light and highly productive all-aluminum cylinder block with a cast-in liner through die casting. The liner is made from powder metallurgy composite (PMC) with 3 to 5 % alumina and 0.5 to 3 % of graphite additives. The PMC reconciles abrasion resistance and machinability. The hardness deterioration of the composite due to the heat at die casting is avoided by using heat-resistant rapidly-solidified powders, made from an aluminum-silecon-iron alloy, for the matrix.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

2012-10-23
2012-32-0104
A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

NOx Conversion Properties of a Mixed Oxide Type Lean NOx Catalyst

2000-03-06
2000-01-1197
Development is proceeding on catalysts which separate the NOx in lean exhaust gas by adsorption and then reduce the adsorbed NOx in combustion exhaust gas with the stoichiometric or a slightly richer air fuel ratio, as well as exhaust conversion technology that uses these catalysts. Amidst this research it has been found that catalysts containing mixed metal oxides exhibit superior NOx adsorption performance, so the authors prepared a mixed metal oxide catalyst by adding precious metals and promoters, etc. The resulting catalyst has high heat resistance and also offers excellent SOx durability. These properties were presumed to be due to an adsorbent including the mixed metal oxide, and the relation between the physical properties and NOx conversion properties of the catalyst was investigated.
Technical Paper

Development of Joint Sheet Gasket with Reduced Amount of Aramid Fibers

2018-10-30
2018-32-0026
Gaskets made of joint sheet are widely used for mating surfaces in engines and transmissions. Before the regulation was issued for restrictions of asbestos usage as a hazardous substance, Honda had already developed non-asbestos joint sheets using aramid fibers substituting for asbestos and started applying them to the products sold worldwide. However, aramid fiber is significantly expensive but, on the other hand, the amount of aramid fiber mixed in a joint sheet will largely influence the sealing performance. Thus, when aramid fiber is applied, cost increase becomes a concern. With this background, a gasket material was designed for reducing the cost without sacrificing the required reliability as a joint sheet assuming the actual applications. The cost was reduced mainly by reducing the amount of aramid fibers used.
Journal Article

Development of Cooling Fan Model and Heat Exchange Model of Condenser to Predict the Cooling and the Heat Resistance Performance of Vehicle

2020-04-14
2020-01-0157
The cooling performance and the heat resistance performance of commercial vehicle are balanced with aerodynamic performance, output power of powertrain, styling, cost and many other parameters. Therefore, it is desired to predict the cooling performance and the heat resistance performance with high accuracy at the early stage of development. Among the three basic forms of heat transfer (conduction, convection and radiation), solving thermal conduction accurately is difficult, because modeling of “correct shape” and setting of coefficient of thermal conductivity for each material need many of time and efforts at the early stage of development. Correct shape means that each part should be attached correctly to generate the solid mesh with high quality. Therefore, it is more efficient and realistic method to predict the air temperature distribution around the rubber/resin part instead of using the surface temperature at the preliminary design stage.
Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

2016-04-05
2016-01-1223
A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
X