Refine Your Search

Topic

Author

Search Results

Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

2012-10-23
2012-32-0104
A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

Development of Aluminum Powder Metal Composite Material Suitable for Extrusion Process used for Cylinder Sleeves of Internal Combustion Engines

2014-04-01
2014-01-1002
There are a couple of ways to manufacture aluminum cylinder blocks that have a good balance between productivity and abrasion resistance. One of them is the insert-molding of a sleeve made of PMC (Powder Metal Composite) by the HPDC (High Pressure Die Casting) method. However, in this method, cracks are apt to occur on the surface when the PMC sleeve is extruded and that has been a restriction factor against higher extrusion speed. The authors attempted to raise this extrusion temperature by eliminating the Cu additive process from the aluminum alloy powder in order to raise its melting point by approximately 50 °C. This enabled the wall of the extruded sleeve to be thinner and the extrusion speed to be higher compared to those of a conventional production method while avoiding the occurrence of surface cracks.
Technical Paper

Application of Load Path Index U* for Evaluation of Sheet Steel Joint with Spot Welds

2012-04-16
2012-01-0534
An attempt was made to apply the index U* in detail analysis of load paths in structural joints under static load, using as examples coupling structures of two joined frames with hat-shaped sections, and T-beam joint structures each including spot welds, both of which are widely used in automotive body structures. U* is a load path analysis index that expresses the strength of connection between load points and arbitrary points on a structure. It was possible to identify areas making up load paths by means of the magnitude of U* values, and to clarify the areas that should be coupled in order to achieve effective load transfer to contiguous members. In addition, because it is possible to determine whether or not each section of a structure possesses the potential for load transfer using U* analysis, the research also demonstrated that U* could be used as an indicator of joint structures providing efficient load transfer.
Journal Article

Development of Improved Method for Magnetically Formed Decorative Painting

2014-11-11
2014-32-0045
Currently, there is a growing demand for application of plastic coverings for motorcycles in the market. Accordingly, decorative features for plastic coverings are increasingly important to enhance the attractiveness of exterior designs of those motorcycles. Under these circumstances, the magnetically formed decorative painting had been adopted to a mass-production model sold in Thailand in 2008. Magnetically formed decorative painting is a method in which the design patterns are formed by painting a material that contains flakes movable along with magnetic fields, while applying magnetic sheets in the ornamenting design shapes underneath the part being painted. It offers a three-dimensional appearance even though its surface has no protrusions or indentations. The degree of three-dimensionality on the paint surface appearance was defined as “plasticity” [1] (a term used in pictorial arts).
Journal Article

Development of Temperature Estimation Method of Whole Engine Considering Heat Balance under Vehicle Running Conditions

2014-11-11
2014-32-0050
For detailed temperature estimates in the engine of a running motorcycle, newly researches were conducted on the method for calculation of temperature distribution using a three-dimensional (3D) thermal conductivity simulation after calculating the total balance of heat generation and heat dissipation of the engine using a one-dimensional (1D) thermal simulation. This project is targeted at air-cooled engines in which the cooling conditions vary significantly depending on the external shapes of the engines and the airflow around them. The heat balance is calculated using the 1D thermal simulation taking into account all the routes and processes for dissipation to the atmosphere of the heat that is generated by the combustion in the engine. The 1D engine cycle simulation is applied to calculate the heat transmission to the engine from the combustion. For the calculation of heat transfer within the engine, the engine components are converted to a one-dimensional model.
Journal Article

Study of Effects of Residual Stress on Natural Frequency of Motorcycle Brake Discs

2014-11-11
2014-32-0053
In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress.
Technical Paper

Technology to Enhance Deep-Drawability by Strain Dispersion Using Stress Relaxation Phenomenon

2015-04-14
2015-01-0531
When the strain is temporarily stopped during tensile testing of a metal, a stress relaxation phenomenon is known to occur whereby the stress diminishes with the passage of time. This phenomenon has been explained as the change of elastic strain into plastic strain. A technique was devised for deliberately causing strain dispersion to occur by applying the stress relaxation phenomenon during stamping. A new step motion that pause the die during forming was devised; it succeeded in modifying the deep-draw forming limit by a maximum of 40%. This new technique was verified through tensile and actual stamping tests. It was confirmed that the use of step motion causes the strain to disperse, thereby modifying the deep draw forming limit. The degree to which the forming limit is modified is dependent on the stop time and the temperature. Step motion technology increases the stampability of high-strength, forming-resistant materials and allows for expanded application of these materials.
Technical Paper

Development of Compact Fuel Pump Module for Motorcycles

2008-09-09
2008-32-0039
A compact, low-cost fuel pump module has been developed for use in motorcycles with a small-displacement engine. Various considerations are given to make the module as compact as possible. The pump motor, which is one of the major component parts, is down-sized specifically for applications to small-displacement engines. The pressure regulator uses a simple construction consisting only of a ball and a spring without a diaphragm. Especially noteworthy is that with the volume reduced by approximately 40% from the conventional pressure regulator while using the construction that reduces self-excited vibrations caused by fuel pressure pulsations, the pressure regulator contributes significantly to the down-sizing and cost reduction of the module. Furthermore, the down-sized module remarkably reduces the size of fuel pump mount surface, allowing a modification from the flat-surface sealing to the radial sealing.
Technical Paper

Development of Compound Coating that Reduces Permeation of Chloride Ion in Salty Water for Hexavalent-Chromium-Free Metal Gasket for PWC Engines

2008-09-09
2008-32-0047
A hexavalent-chromium-free metal gasket for PWC engines was developed to correspond to the ELV (End of Life Vehicle) directive. In order to enhance the adhesive property, the ion capture to trap the chloride ion, an anti-rust pigment to reform the chemical coating, and an inorganic sealer to stop the passage of chloride ion were added to the adhesive and rubber raw material. A good adhesive property and rubber physical property was obtained through the addition of an anticorrosive pigment. The rubber vulcanization condition in the manufacturing process was reviewed. As a result, without modifying the current compound coating line for mass-production, a gasket with a blistering resistance more than hexavalent chromium conversion coating equivalence and coating adhesion was developed when using salt water for engine cooling.
Technical Paper

Development of a Small-Sized Multilayer Fuel Tank for Motorcycles and ATVs Complying with EPA Gasoline Permeation Controls

2008-09-09
2008-32-0041
As a result of recent EPA (U.S. Environmental Protection Agency) gasoline permeation control regulations, the fuel tanks on motorcycles and ATVs (All-Terrain Vehicles) are required to change to lower gasoline permeation performance on 2008 models. Therefore, we determined to use a multilayer plastic fuel tank. There are some molding issues that are peculiar to motorcycle and ATV fuel tanks. First, when the insert is blow molded, there is a reduction in welding strength. Second, peeling of the adhesion occurs on impact in the inserted parts. Third, saddle shapes with large ductility deformation are easy to be punctured during molding. Finally, the appearance of the fuel tank is not acceptable. In order to address the first issue, the welding performance, the drawdown of parison and the melting damage of insert parts were balanced, focusing attention to the temperatures of the parison and the insert.
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
Technical Paper

47 Development of a Titanium Material by Utilizing Off-Grade Titanium Sponge

2002-10-29
2002-32-1816
Titanium alloy for forging and pure titanium material for exhaust systems have been developed. The forging alloy will be applied to production of lightweight motorcycle frames and the pure titanium will be applied to improve engine performance. The materials have been made inexpensive by the use of off-grade sponge that includes many impurities for production of titanium ingot. Stable characteristics have been obtained by controlling oxygen equivalent after setting the volume of tolerable impurities by considering mechanical properties and production engineering. In spite of low-cost, the material provides the same design strength compared to conventional material, and enables parts production with existing equipment. A review of manufacturing and surface treatment processes indicated a reduction in the price of titanium parts produced with this new material.
Technical Paper

Engine Knock Toughness Improvement Through Water Jacket Optimization

2003-10-27
2003-01-3259
Improvement of engine cycle thermal efficiency is an effective way to increase engine torque and to reduce fuel consumption simultaneously. However, the extent of the improvement is limited by engine knock, which is more evident at low engine speeds when combustion flame propagation is relatively slow. To prevent engine damage due to knock, the spark ignition timing of a gasoline engine is usually controlled by a knock sensor. Therefore, an engine's ignition timing cannot be set freely to achieve best engine performance and fuel economy. Whether ignition timings for a multi-cylinder engine are the same or can be set differently for each cylinder, it is not desirable for each cylinder has big deviation from the median with respect to knock tendency. It is apparent that effective measures to improve engine knock toughness should address both uniformity of all cylinders of a multi-cylinder engine and improvement of median knock toughness.
Journal Article

Fretting Analysis of an Engine Bearing Cap Using Computer Simulation

2016-04-05
2016-01-1083
The independent bearing cap is a cylinder block bearing structure that has high mass reduction effects. In general, this structure has low fastening stiffness compared to the rudder block structure. Furthermore, when using combination of different materials small sliding occurs at the mating surface, and fretting fatigue sometimes occurs at lower area than the material strength limit. Fretting fatigue was previously predicted using CAE, but there were issues with establishing a correlation with the actual engine under complex conditions, and the judgment criteria were not clear, so accurate prediction was a challenge. This paper reports on a new CAE-based prediction method to predict the fretting damage occurring on the bearing cap mating surface in an aluminum material cylinder block. First of all, condition a fretting fatigue test was performed with test pieces, and identification of CAE was performed for the strain and sliding amount.
Journal Article

Prediction of Fatigue Strength of Motorcycle Exhaust System Considering Vibrating and Thermal Stresses

2015-11-17
2015-32-0739
A method applicable in the design stage to predict fatigue strength of a motorcycle exhaust system was developed. In this prediction method, a vibrating stress, thermal stresses, stresses resulting from the assembling of the exhaust system components and a deterioration of fatigue strength of materials originated from high temperature were simultaneously taken into account. For the prediction of the vibrating stress, flexible multibody dynamics was applied to get modeling accuracy for vibration characteristics of the entire motorcycle and the exciting force delivered from engine vibrations. The thermal conduction analysis and the thermal deformation analysis based on finite element method (FEM) were applied for the prediction of thermal stresses in the exhaust system components. The temperature distribution on the surfaces of the exhaust system components is required for calculations of the thermal stresses.
Technical Paper

Development of Aluminium Hollow Subframe Using High-Pressure Die Casting

2016-04-05
2016-01-0406
High-tensile steel plates and lightweight aluminum are being employed as materials in order to achieve weight savings in automotive subframe. Closed-section structures are also in general use today in order to efficiently increase parts stiffness in comparison to open sections. Aluminum hollow-cast subframe have also been brought into practical use. Hollow-cast subframe are manufactured using sand cores in gravity die casting (GDC) or low-pressure die casting (LPDC) processes. Using these manufacturing methods, it is difficult to reduce product thickness, and the limitations of the methods therefore make the achievement of weight reductions a challenge. The research discussed in this paper developed a lightweight, hollow subframe technology employing high-pressure die casting (HPDC), a method well-suited to reducing wall thickness, as the manufacturing method. Hollow-casting using HPDC was developed as a method of forming water jackets for water-cooled automotive engines.
Journal Article

Application of Rapid Heat and Cool Molding to High Strength Outer Parts without Painting Treatment

2016-11-08
2016-32-0024
Glass fiber reinforced plastic of polyamide is applied as one of the materials used for the high strength exterior parts of a motorcycle, such as a rear grab rail or a carrier, to which both strength and good exterior appearance are required. However, Glass Fiber reinforced Polypropylene (PPGF), which is relatively inexpensive material, has a property that the contained glass fibers are prone to be exposed at the surface and, therefore, the requirements for good appearance are hardly met by using PPGF. In this study, Heat and Cool molding method (H&C molding) was employed to realize a cost reduction by using PPGF yet without applying painting process, and the established method was applied to mass production while fulfilling the requirements for a good exterior appearance. In H&C molding, the metal molds are heated up by steam and cooled down by water after molding.
Technical Paper

Transmission-Mounted Power Control Unit with High Power Density for Two-Motor Hybrid System

2016-04-05
2016-01-1223
A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
Journal Article

Concept for Improving Cost Effectiveness of Thermoelectric Heat Recovery Systems

2016-04-05
2016-01-0233
The practical application of heat recovery using thermoelectrics requires the realization of reasonable cost effectiveness. Therefore, a thermoelectric generator (TEG) structure that can compatibly increase efficiency and reduce cost was investigated with the aim of enhancing cost effectiveness. To increase efficiency, a method of using a vacuum space structure to reduce the TEG size was investigated to enable installation just after the close-coupled catalyzer, which is subject to many space restrictions. It was found that by making it possible to use high temperature exhaust heat, power generation efficiency can be increased to approximately twice that of the typical under floor installation. In addition, coupled simulation of heat transfer and power generation using FEM, 1D cost effectiveness simulations, and bench tests were performed with the aim of reducing cost.
X