Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-11-01
A new index for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U* , which expresses the connection strength between a load point and an arbitrary point within the structure enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Presenter Tadashi Naito, Honda R&D Co., Ltd.
Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Technical Paper

Study of Effect of CVT Pulleys on Strength and Transmission Efficiency of Metal Pushing V-belts

2011-04-12
2011-01-1426
In designing CVT pulleys, the effect of the fit clearance of the movable pulleys and their stiffness on the transmission efficiency and strength of the metal pushing V-belt is not necessarily clear. The research discussed in this paper introduced a pulley model that defined the pulleys as elastic bodies to a previously developed technology for the prediction of the transmission efficiency of the belts. As a result, it was found that when the fit clearance is reduced, the transmission efficiency of the belt is increased, and the amplitude of stress on the innermost rings and the element neck section is reduced. In addition, it was found that if pulley stiffness was reduced transmission efficiency was also reduced, and the amplitude of stress on the element neck section increased. This indicated that the fit clearance and the pulley stiffness changed the degree of deflection of the pulleys in the axial direction.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

Development of Prediction Method of Static Torque Sharing Distribution of Planetary Gear Sets Generated by Manufacturing Error Distribution

2011-04-12
2011-01-0719
This paper discusses a method of predicting the torque distribution on planet gears originating in manufacturing errors, which is necessary for appropriate strength design of the gears in planetary gear sets. First, an expression of relation between manufacturing errors and the torque on the planet gears in a normal n-planet planetary gear set was derived. As a result, an equation expressing the distribution of torque to the planet gears was obtained. Tests were conducted to verify the validity of the equation in the case of a 4-planet planetary gear set. In order to predict the distribution of torque, it was necessary to estimate the stiffness of the planetary gear set that was the subject of the relational expression. These stiffness values were calculated by numerical analysis using a 3D FEM, into which blueprint values and material property values were input.
Technical Paper

New Proposal of Piston Skirt Form using Multi Objective Optimization Method

2011-04-12
2011-01-1079
A multi-objective optimization model using a piston behavior simulation for the prediction of NV, friction and scuffing was created. This model was used to optimize the piston skirt form, helping to enable well-balanced forms to be sought. Optimization calculations, involving extended analyses and numerous design variables, conventionally necessitate long calculation times in order to achieve adequate outcomes. Because of this, in the present project data was converted into functions in order to help enable the complex piston skirt form to be expressed using a small amount of coefficients. Using the limit values for manufacturability and the degree of contribution to the target functions, the scope of design variables was restricted, and the time necessary for the analysis was significantly reduced. This has helped to enable optimal solutions to be determined within a practical time frame.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

2012-10-23
2012-32-0104
A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

Fuel Consumption and Power Performance Prediction in Outboard Motors for High-Speed Planing Boats using CFD Simulation

2012-10-23
2012-32-0099
Predicting fuel consumption and performance of an outboard motor for a high speed small planing boat are numerically challenging. The propeller is one of the most popular propulsion systems used for outboard motors. We focused our attention on the fact that the thrust performance of a propeller has a major impact on cruising fuel consumption and performance. We believe that we can numerically predict cruising fuel consumption, which has conventionally been estimated through experiential means, using accurate thrust performance measurements via CFD simulation without cavitations model. This study aims to develop a simulator that could quantitatively predict cruising fuel consumption and performance of an outboard motor used for a high speed small planing boat. After comparing the CFD simulation of propellers against the results of model tests, the simulated results are in good agreement with the experimental results.
Journal Article

Development of Rare Earth-saving Magnet Using Localized Diffusion Method

2013-04-08
2013-01-1757
Nd₂Fe₁₄B sintered magnets are used in the drive motors of hybrid, electric and other vehicles. A magnet in which rare earth content is reduced by means of a localized diffusion method has been developed in order to reduce the volume of dysprosium. The distribution of the demagnetization fields in a motor is not uniform, so the necessary coercivity distribution for the magnets was quantified using Computer-Aided Engineering (CAE). Then material specifications of the localized dysprosium diffusion satisfied with this coercivity distribution was determined, and optimal manufacturing conditions including the position of dysprosium diffusion were set. The coercivity distribution in every position of the magnet using localized diffusion method was inspected. As a result, the magnet was satisfied with coercivity distribution demanded by CAE.
Technical Paper

Investigation of a Simplified Vehicle Model that Can Reproduce Car-Pedestrian Collisions

2014-04-01
2014-01-0514
Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation.
Technical Paper

Effect of Unsteady Lift Force on Vehicle Dynamics in Heave and Pitch Motion

2014-04-01
2014-01-0576
The change in the aerodynamic lift force (henceforth CL) by heave motion is discussed in this paper in order to clarify the effect of aerodynamic characteristics on the vehicle dynamic performance. We considered that phenomenon in actual car running at 160km/h and 1Hz heave frequency. Using a towing tank to change its water from the air to the working fluid to more easily observe this phenomenon. That makes possible to observe the same phenomenon with reduced velocity and small models under same Strouhal number condition. This method can be reducing vehicle speed to 3m/s (1/15 actual) and frequency to 0.2Hz (1/5 actual) in case using 40% scaled model. The results of these tests showed that unsteady CL is proportional to heave motion. These results showed the proportional relationship between unsteady CL and heave motion. The formularization of unsteady CL made it possible to introduce shape coefficients to vehicle dynamics simulations as functions of heave velocity.
Technical Paper

Investigation on Generational Difference of Intracranial Responses Related to Traumatic Brain Injuries Using Age-Specific Human Head/Brain FE Models

2014-04-01
2014-01-0485
The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Technical Paper

Analysis of the Contribution of Body Flexibility to the Handling and Ride Comfort Performance of Passenger Cars

2010-04-12
2010-01-0946
Full vehicle multibody models are commonly used to improve the handling and ride comfort performance of passenger cars. When focusing on body, it is difficult to validate the simulation results as the forces at the body/suspension interface cannot be measured. Moreover, body results cannot be easily correlated to the handling perception because it is by nature subjective. In this paper, we present a new methodology based on experimental data to analyze the contribution of the body flexibility to the handling performance of a passenger car. This method, using operational measurements and body measurements, allows in a first step to identify the body forces and in a second step, to analyze the contribution of the body modes during handling maneuvers. The same process can be applied for ride comfort.
Technical Paper

Prediction of Transient Body Deformation During Handling Maneuvers

2010-04-12
2010-01-0945
A multi-body dynamics model that considers elastic deformation of the body was formulated in order to predict transient body deformation, a factor that affects handling. A comparative analysis with body deformation during handling maneuvers identified using a modal forced response method was conducted, and a good correlation was obtained between vehicle dynamic performance, transient body deformation, and the body modal contribution factor.
Technical Paper

Development of Evaluation Method for Low-Cycle Fatigue Breakdown on HSDI Diesel Cylinder Head

2010-04-12
2010-01-0695
With a growing demand for high-power diesel engines, a key issue in engine development is to create efficient methods for developing highly durable cylinder heads, without having to repeat trial-and-error testing. Especially, it was difficult to accurately predict the occurrence and origin of cracks on the surfaces of cylinder heads in hot and cold cycle engine operation. This paper describes a thermal fatigue evaluation method developed by analyzing areas around the glow plug hole where cracks often occur during hot and cold cycle engine operation. To reveal the conditions of edges from which cracks were formed under engine durability tests, we used two procedures. One was estimating local temperature of edge areas based on material hardness determination, in order to compensate for the accuracy of the thermal analysis. The other was analyzing the strain amplitudes on the cylinder head surface using computer simulation.
Technical Paper

Investigation about Predictive Accuracy of Empirical Engine Models using Design of Experiments

2011-08-30
2011-01-1848
This study focuses on improvement of the predictive accuracy of empirical engine models using the Model Base Calibration (MBC) method. This research discusses the effects of the number of measurement points on the accuracy of models for different Design of Experiments (DoE) by using a direct-injection 4-cylinder diesel engine. The results show that the predictive accuracy of the models converges on fixed values when the number of measurement points is increased in Latin Hypercube Sampling (LHS) and D-Optimal Design. This is because the probability density distribution of the measurement data has little variation as the number of measurement points increases. Comparing LHS and D-Optimal indicates that D-Optimal displays a higher level of accuracy, it is able to extend the boundary model because of its greater number of measurement points at the boundaries of the boundary model.
Technical Paper

Numerical Analysis of Turbocharger Response Delay Mechanism

2010-04-12
2010-01-1226
Increasing fuel economy is highly demanded because of the GHG reduction today. Turbocharged downsized engines have much attention as one of the effective technology for this demand. Turbocharged boost technology enables to increase thermal efficiency, but this also has a response delay known as turbo lag, which may cause lower engine performance and poor drivability. This issue impedes the broader application of this technology. The research discussed in this paper focused on turbo lag, and adopted a numerical approach to analyzing the detailed mechanism of this phenomenon. The study concluded that turbo lag is a delay in the boost pressure response that originates from a combination of factors. The primary factor in turbo lag is a delay that is due to physical properties of the turbocharger system; the secondary factor is a decreased effective turbine energy caused by a shift in the operating point, resulting from the primary factor.
Journal Article

Design Optimization of Interior Permanent Magnet Synchronous Motors for HEV & EV

2010-04-12
2010-01-1252
This paper proposes a new motor design procedure for reducing motor loss in hybrid vehicles (HEV) and electric vehicles (EV). To find an optimum design in a short time, a non-linear magnetic circuit model was developed for interior permanent magnet synchronous motors (IPMSM). Speed-torque curves and motor losses were calculated based on this model. Combined with Energy Management Simulation, this model makes it possible to find an optimum motor design with minimum loss.
X