Refine Your Search

Topic

Author

Search Results

Technical Paper

The Validity of EPS Control System Development using HILS

2010-04-12
2010-01-0008
In recent years, the increased use of electric power steering in vehicles has increased the importance of issues such as making systems more compact and lightweight, and dealing with increased development man-hours. To increase development efficiency, the use of a “Hardware in the loop simulator” (HILS) is being tested to shift from the previous development method that relied on a driver's subjective evaluation in an actual vehicle test to bench-test development. Using HILS enables tasks such as specification studies, performance forecasts, issue identification and countermeasure proposals to be performed at an early stage of development even when there is no prototype vehicle. This report describes a case study of using HILS to solve the issues of reducing the load by adjusting the geometric specifications around the kingpin and eliminating the tradeoff by adding a new EPS control algorithm in order to make the electric power steering (EPS) more compact and lightweight.
Journal Article

Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid

2011-04-12
2011-01-1335
Simulation was employed to estimate the fuel economy enhancement from the application of an exhaust heat recovery system using a thermoelectric generator (TEG) in a series hybrid. The properties of the thermoelectric elements were obtained by self-assessment and set as the conditions for estimating the fuel economy. It was concluded that applying exhaust system insulation and forming the appropriate combination of elements with differing temperature properties inside the TEG could yield an enhancement of about 3% in fuel economy. An actual vehicle was also used to verify the calculation elements in the fuel economy simulation, and their reliability was confirmed.
Technical Paper

New Proposal of Piston Skirt Form using Multi Objective Optimization Method

2011-04-12
2011-01-1079
A multi-objective optimization model using a piston behavior simulation for the prediction of NV, friction and scuffing was created. This model was used to optimize the piston skirt form, helping to enable well-balanced forms to be sought. Optimization calculations, involving extended analyses and numerous design variables, conventionally necessitate long calculation times in order to achieve adequate outcomes. Because of this, in the present project data was converted into functions in order to help enable the complex piston skirt form to be expressed using a small amount of coefficients. Using the limit values for manufacturability and the degree of contribution to the target functions, the scope of design variables was restricted, and the time necessary for the analysis was significantly reduced. This has helped to enable optimal solutions to be determined within a practical time frame.
Technical Paper

Prediction Method of Surface Pressure against Gasket in Consideration of Creep on Cylinder Head in Air-Cooled Engines

2012-10-23
2012-32-0104
A method was designed to predict the gasket surface pressure in consideration of creep which occurs on the surface of the gasket side of the cylinder head in air-cooled engines. Creep caused by heat can cause major deformation on the gasket side of the cylinder head in air-cooled engines, which may result in combustion gas leaking from between the cylinder and cylinder head. Until now, there have been no reports of methods to accurately predict phenomena relating to this deformation in the initial stage of engine design. This study combined values of strain and temperature occurring on the gasket side of the cylinder head, obtained through FEM analysis of steady heat transfer and thermal stress, with unit test results showing the domains in which the influence of the creep is critical or not. This information was used to design a method to determine whether or not an engine's specifications fell into a domain in which creep would have an effect, and predict surface pressure.
Technical Paper

Fuel Consumption and Power Performance Prediction in Outboard Motors for High-Speed Planing Boats using CFD Simulation

2012-10-23
2012-32-0099
Predicting fuel consumption and performance of an outboard motor for a high speed small planing boat are numerically challenging. The propeller is one of the most popular propulsion systems used for outboard motors. We focused our attention on the fact that the thrust performance of a propeller has a major impact on cruising fuel consumption and performance. We believe that we can numerically predict cruising fuel consumption, which has conventionally been estimated through experiential means, using accurate thrust performance measurements via CFD simulation without cavitations model. This study aims to develop a simulator that could quantitatively predict cruising fuel consumption and performance of an outboard motor used for a high speed small planing boat. After comparing the CFD simulation of propellers against the results of model tests, the simulated results are in good agreement with the experimental results.
Technical Paper

Investigation of a Simplified Vehicle Model that Can Reproduce Car-Pedestrian Collisions

2014-04-01
2014-01-0514
Japanese accident statistics show that despite the decreasing trend of the overall traffic fatalities, more than 1,000 pedestrians are still killed annually in Japan. One way to develop further understanding of real-world pedestrian accidents is to reconstruct a variety of accident scenarios dynamically using computational models. Some of the past studies done by the authors' group have used a simplified vehicle model to investigate pedestrian lower limb injuries. However, loadings to the upper body also need to be reproduced to predict damage to the full body of a pedestrian. As a step toward this goal, this study aimed to develop a simplified vehicle model capable of reproducing pedestrian full-body kinematics and pelvis and lower limb injury measures. The simplified vehicle model was comprised of four parts: windshield, hood, bumper and lower part of the bumper. Several different models were developed using different combinations of geometric and stiffness representation.
Technical Paper

Effect of Unsteady Lift Force on Vehicle Dynamics in Heave and Pitch Motion

2014-04-01
2014-01-0576
The change in the aerodynamic lift force (henceforth CL) by heave motion is discussed in this paper in order to clarify the effect of aerodynamic characteristics on the vehicle dynamic performance. We considered that phenomenon in actual car running at 160km/h and 1Hz heave frequency. Using a towing tank to change its water from the air to the working fluid to more easily observe this phenomenon. That makes possible to observe the same phenomenon with reduced velocity and small models under same Strouhal number condition. This method can be reducing vehicle speed to 3m/s (1/15 actual) and frequency to 0.2Hz (1/5 actual) in case using 40% scaled model. The results of these tests showed that unsteady CL is proportional to heave motion. These results showed the proportional relationship between unsteady CL and heave motion. The formularization of unsteady CL made it possible to introduce shape coefficients to vehicle dynamics simulations as functions of heave velocity.
Technical Paper

Investigation on Generational Difference of Intracranial Responses Related to Traumatic Brain Injuries Using Age-Specific Human Head/Brain FE Models

2014-04-01
2014-01-0485
The high frequency of fatal head injuries of elderly people in traffic accidents is one of the important issues in Japan. One of the causes may be vulnerability of the aged brain. While a human head/brain FE model is a useful tool to investigate head injury mechanism, there has not been a research result using a model considering the structural and qualitative changes of the brain by aging. The objective of this study was to clarify the generational difference of intracranial responses related to traumatic brain injuries (TBI) under impact loading. In this study, the human head/brain FE models in their twenties (20s) and seventies (70s) were used. They were developed by reflecting the age-specific characteristics, such as shape/size and stiffness of brain matter and blood vessels, to the baseline model developed by Global Human Body Models Consortium (GHBMC) LLC.
Technical Paper

3D-PIV Measurement and Visualization of Streamlines Around a Standard SAE Vehicle Model

2011-04-12
2011-01-0161
In CFD (Computational Fluid Dynamics) verification of vehicle aerodynamics, detailed velocity measurements are required. The conventional 2D-PIV (Two Dimensional Particle Image Velocimetry) needs at least twice the number of operations to measure the three components of velocity ( u,v,w ), thus it is difficult to set up precise measurement positions. Furthermore, there are some areas where measurements are rendered impossible due to the relative position of the object and the optical system. That is why the acquisition of detailed velocity data around a vehicle has not yet been attained. In this study, a detailed velocity measurement was conducted using a 3D-PIV measurement system. The measurement target was a quarter scale SAE standard vehicle model. The wind tunnel system which was also designed for a quarter scale car model was utilized. It consisted of a moving belt and a boundary suction system.
Technical Paper

Analysis of the Contribution of Body Flexibility to the Handling and Ride Comfort Performance of Passenger Cars

2010-04-12
2010-01-0946
Full vehicle multibody models are commonly used to improve the handling and ride comfort performance of passenger cars. When focusing on body, it is difficult to validate the simulation results as the forces at the body/suspension interface cannot be measured. Moreover, body results cannot be easily correlated to the handling perception because it is by nature subjective. In this paper, we present a new methodology based on experimental data to analyze the contribution of the body flexibility to the handling performance of a passenger car. This method, using operational measurements and body measurements, allows in a first step to identify the body forces and in a second step, to analyze the contribution of the body modes during handling maneuvers. The same process can be applied for ride comfort.
Technical Paper

Prediction of Transient Body Deformation During Handling Maneuvers

2010-04-12
2010-01-0945
A multi-body dynamics model that considers elastic deformation of the body was formulated in order to predict transient body deformation, a factor that affects handling. A comparative analysis with body deformation during handling maneuvers identified using a modal forced response method was conducted, and a good correlation was obtained between vehicle dynamic performance, transient body deformation, and the body modal contribution factor.
Technical Paper

Development of Evaluation Method for Low-Cycle Fatigue Breakdown on HSDI Diesel Cylinder Head

2010-04-12
2010-01-0695
With a growing demand for high-power diesel engines, a key issue in engine development is to create efficient methods for developing highly durable cylinder heads, without having to repeat trial-and-error testing. Especially, it was difficult to accurately predict the occurrence and origin of cracks on the surfaces of cylinder heads in hot and cold cycle engine operation. This paper describes a thermal fatigue evaluation method developed by analyzing areas around the glow plug hole where cracks often occur during hot and cold cycle engine operation. To reveal the conditions of edges from which cracks were formed under engine durability tests, we used two procedures. One was estimating local temperature of edge areas based on material hardness determination, in order to compensate for the accuracy of the thermal analysis. The other was analyzing the strain amplitudes on the cylinder head surface using computer simulation.
Journal Article

Design Optimization of Interior Permanent Magnet Synchronous Motors for HEV & EV

2010-04-12
2010-01-1252
This paper proposes a new motor design procedure for reducing motor loss in hybrid vehicles (HEV) and electric vehicles (EV). To find an optimum design in a short time, a non-linear magnetic circuit model was developed for interior permanent magnet synchronous motors (IPMSM). Speed-torque curves and motor losses were calculated based on this model. Combined with Energy Management Simulation, this model makes it possible to find an optimum motor design with minimum loss.
Technical Paper

Study and Application of Prediction Method for Low Frequency Road Noise

2010-04-12
2010-01-0507
When a vehicle drives over road seams or a bumpy surface, low-frequency noise called drumming is generated, causing driver discomfort. The generation of drumming noise is closely related to the vibration characteristics of the suspension, body frame, and body panels, as well as the acoustic characteristics of the vehicle interior. It is therefore difficult to take measures to get rid of drumming after the basic vehicle construction has been finalized. Aiming to ensure drumming performance in the drawing review phase, we applied the Finite Element Method (FEM) to obtain acoustical transfer functions of the body, and Multi Body Simulation to get suspension load characteristics. This paper presents the results of the study of drumming prediction technology using this hybrid approach.
Journal Article

Development of Estimation for Strain in Damages of Motorcycle Engine Parts When Tipped Over from Stationary State

2013-10-15
2013-32-9096
In this research, a simulation method was developed in which it was able to estimate, in the early stage of design, the strains that potentially lead to damages to motorcycle engine parts when tipped over from a stationary state. Splitting a series of phenomena from the start of tilting of motorcycle from the upright position up to the end of collision of engine parts after the contact on the ground to two groups by before and after the contact of engine parts on the ground, we applied the multi body dynamics analysis to the first group, and the elastro-plastic FEM analysis to the latter one. In the computer simulation of collision using the elastro-plastic FEM analysis, we minimized the FEM models from the entire motorcycle models and treated others as a solid model to shorten the computation period. It is also realized that the strains occurring in the engine parts can be simulated by considering only the mass of the parts which are rigidly mounted on the engine.
Technical Paper

New Technique for Optimizing Member Cross-Sections in Car Bodies to Reduce Noise and Weight

2012-04-16
2012-01-0772
Currently, car bodies require further weight reduction in order to support increasing fuel economy requirements. An efficient way for light weight body design is to include body member size as a design variable in addition to part thickness. However it is currently difficult for finite element (FE) models to change member size even using current morphing techniques. To break through this challenge, a hybrid modeling approach was developed which combines shell and beam element representations of body structural members. The original member shell element thickness was decreased by 40%. Then the stiffness reduction caused by this change is offset by beam elements incorporated inside these members. These beams can represent the stiffness change due to new cross sectional dimensions or orientations without changing the original shell elements, thus avoiding modeling instabilities that can occur from morphing.
Technical Paper

Optimization of Semi-Floating Piston Pin Boss Formed by Using Oil-Film Simulations

2012-04-16
2012-01-0908
This paper describes the oil-film bearing analysis simulation was utilized for the optimization of pin boss form which reduces a piston-pin noise. It is clear from the mechanism analysis of the piston-pin noise which is the last research that an oil-film flow inside a pin boss is an important factor for pin noise reduction. So, in this research, the oil-film simulation of the piston-pin-boss bearing part was performed using oil-film bearing analysis tool. After setting up the simulation conditions of the oil-film bearing part so that actual pin behavior and high correlativity might be shown, a parameter, effective hydrodynamic angular velocity, and an oil flow rate of change suitable for evaluation of a pin noise were found out. The pin noise in semi floating piston was reduced to the same level as full floating type by applying pin boss form to which each evaluation parameter becomes the optimal to a piston.
Journal Article

Quantitative Representations of Aerodynamic Effects on Handling Response and Flat Ride of Vehicles

2012-04-16
2012-01-0445
The effects of aerodynamic coefficients on handling response and flat ride were quantified. For handling response, the aerodynamic effect was quantified by analysis with linear representation and a two-wheel simulation model, using aerodynamic coefficients obtained from a full scale car wind tunnel. The correlation of aerodynamic coefficients and handling response with driving feel was also ascertained. Aerodynamic yaw moment and side-force were also converted to equivalent front and rear lift to standardize aerodynamic indexes and improve aerodynamic development efficiency. For flat ride, steady and unsteady aerodynamic effects were quantified by analysis with a two-degree-of-freedom mass-spring-damper simulation model and aerodynamic coefficients obtained from a 35% scale model wind tunnel and towing tank test. Unsteady aerodynamic force occurrence mechanism was ascertained by unsteady CFD using dynamic mesh.
Technical Paper

Study on Reduction of Timing Chain Friction Using Multi-Body Dynamics

2012-04-16
2012-01-0412
A method for reducing friction loss in the engine timing chain was investigated using multi-body dynamics simulation. The method known as the link-by-link model was employed in the simulation to enable representation of the behavior of each single link of the chain and its friction due to contact. In order to predict the friction under actual engine operating conditions, a model that takes camshaft torque fluctuation and crankshaft rotational speed fluctuation into account was created. This simulation was used to verify the detailed distribution of friction in each part of the chain system as well as the changes of friction in the time domain. As a result, it was found that the sliding friction in the chain tensioner guide and chain guide was larger than in other locations. Based on this result, a method of reducing friction entirely by measures in mechanisms and structures without relying on low-friction materials was investigated.
Technical Paper

Prediction Technology for Motorcycle Drivability Attributed to Drive Train Characteristics

2012-04-16
2012-01-0308
The feeling given through the vibration, which is transiently generated by the body when the throttle is beginning to be opened, is one of the important factors that affect the quality of drivability in motorcycles. This feeling is usually evaluated by subjective ratings on actual motorcycles carried out by expert riders and the specifications are decided based on those results. In this research, the subjective rating was expressed as a formula and the simulation technology of behavior prediction was constructed for the parts associated with the drive train as well as the motorcycle body. The responding time delay, the magnitude of overshoot and the vibration frequencies were extracted as highly correlated factors with the evaluation results of subjective ratings through the analysis on the characteristics of longitudinal acceleration responses of the body to the magnitude of throttle opening.
X