Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Diesel Engine Real time NOx Emission Simulation System Based on RTW and VxWorks

2007-01-23
2007-01-0025
Lower engine emission is an important target in the evaluation of the control strategy of ECU. So the hardware in the loop simulation system (HILSS) including emission model is necessary. In this paper, a NOx emission neural network (NN) model is constructed based on the reflection relationship between the NOx formation and some direct influence factors such as concentration of oxygen, combustion temperature, combustion period. Combined with a nonlinear dynamic diesel engine model based on the filling and emptying methods, the NOx emission NN model can reach the trade-off between simulation accuracy and computational overhead. A new HILS platform based on Matlab/RTW and VxWorks real time operating system is introduced in the paper. The graphic programming and automatic code generating methods also developed to accelerate the development of HILSS.
Technical Paper

On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF

2022-03-29
2022-01-0297
The road adhesion coefficient has a great impact on the performance of vehicle tires, which in turn affects vehicle safety and stability. A low coefficient of adhesion can significantly reduce the tire's traction limit. Therefore, the measurement of the coefficient is much helpful for automated vehicle control and stability control. Considering that the road adhesion coefficient is an inherent parameter of the road and it cannot be known directly from the information of the on-vehicle sensors. The novelty of this paper is to construct a road adhesion coefficient observer which considers the noise of sensors and measures the unknown state variable by the trained neural network. A Butterworth filter and Adaptive Neural Fuzzy Interference System (ANFIS) are combined to provide the lateral and longitudinal velocity which cannot be measured by regular sensors.
Technical Paper

Automated Vehicle Path Planning and Trajectory Tracking Control Based on Unscented Kalman Filter Vehicle State Observer

2021-04-06
2021-01-0337
For automated driving vehicles, path planning and trajectory tracking are the core of achieving obstacle avoidance. Real-time external environment perception and vehicle state monitoring play the important role in the decision-making of vehicle operation. Sensor measuring is an important way to obtain vehicle state parameters, but some parameters cannot be measured due to sensor cost or technical reasons, such as vehicle lateral velocity and side-slip angle. This disadvantage will adversely affect the monitoring of vehicle self-condition and the control of vehicle running, even it will lead to erroneous decision-making of vehicles. Therefore, this paper proposes an automated driving path planning and trajectory tracking control method based on Kalman filter vehicle state observer. Some of vehicle state data can be measured accurately by sensors.
Technical Paper

Neural-Network-Based Suspension Kinematics and Compliance Characteristics and Its Implementation in Full Vehicle Dynamics Model

2022-03-29
2022-01-0287
Suspension kinematics and compliance strongly influence the handling performance of the vehicle. The kinematics and compliance characteristics are determined by the suspension geometry and stiffness of suspension bodies and elastic components. However, it is usually inefficient to model all the joints, bushings, and linkage deformation in a full vehicle model. By transforming the complex modeling problem into a data-driven problem tends to be a good solution. In this research, the neural-network-based suspension kinematics and compliance model is built and implemented into a 17 DOF full vehicle model, which is a hybrid model with state variables expressed in the global coordinate system and vehicle coordinate system. The original kinematics and compliance characteristics are derived from multibody dynamics simulation of the suspension system level.
Technical Paper

Collision Avoidance Strategy of High-Speed AEB System Based on Minimum Safety Distance

2021-04-06
2021-01-0335
The automatic emergency braking (AEB) system is an important part of automobile active safety, which can effectively reduce rear-end collision accidents and protect drivers' safety through active braking. AEB system has been included in many countries' new car assessment programme as the test content of active safety. In view of obviously deficiencies of the existing AEB control algorithm in avoiding longitudinal collision at high speed, it is proposed to an optimized model of the minimum safe distance for rear-end collision prevention on high-speed road in order to improve the accuracy of AEB system. Considering the influence of road adhesion coefficient and human comfort on the maximum braking deceleration, it is established to a more accurate and reasonable AEB system to avoid collision for expressway. The collision avoidance strategy is verified by simulation software.
X