Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Improvement and Validation of Hybrid III Dummy Knee Finite Element Model

2015-04-14
2015-01-0449
The public Hybrid III family finite element models have been used in simulation of automotive safety research widely. The validity of an ATD finite element model is largely dependent on the accuracy of model structure and accurate material property parameters especially for the soft material. For Hybrid III 50th percentile male dummy model, the femur load is a vital parameter for evaluating the injury risks of lower limbs, so the importance of accuracy of knee subcomponent model is obvious. The objective of this work was to evaluate the accuracy of knee subcomponent model and improve the validity of it. Comparisons between knee physical model and knee finite element model were conducted for both structure and property of material. The inaccuracy of structure and the material model of the published model were observed.
Journal Article

Vehicle Parameter Estimation Based on Full-Car Dynamic Testing

2015-04-14
2015-01-0636
Effectively obtaining physical parameters for vehicle dynamic model is the key to successfully performing any computer-based dynamic analysis, control strategy development or optimization. For a spring and lump mass vehicle model, which is a type of vehicle model widely used, its physical parameters include sprung mass, unsprung mass, inertial properties of the sprung mass, stiffness and damping coefficient of suspension and tire, etc. To minimize error, the paper proposes a method to estimate these parameters from vehicle modal parameters which are in turn obtained through full-car dynamic testing. To verify its effectiveness, a visual vehicle with a set of given parameters, build in the Adams(Automatic Dynamic Analysis of Mechanical Systems)/Car environment, is used to perform the dynamic testing and provide the testing data for the parameter estimation.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Toward High Automatic Driving by a Dynamic Optimal Trajectory Planning Method Based on High-Order Polynomials

2020-04-14
2020-01-0106
This paper intends to present a novel optimal trajectory planning method for obstacle avoidance on highways. Firstly, a mapping from the road Cartesian coordinate system to the road Frenet-based coordinate system is built, and the path lateral offset in the road Frenet-based coordinate system is represented by a function of quintic polynomial respecting the traveled distance along the road centerline. With different terminal conditions regarding its position, heading and curvature of the endpoint, and together with initial conditions of the starting point, the path planner generates a bunch of candidate paths via solving nonlinear equation sets numerically. A path selecting mechanism is further built which considers a normalized weighted sum of the path length, curvature, consistency with the previous path, as well as the road hazard risk.
Journal Article

Evaluation of Aerodynamic Noise Generated in a Miniature Car Using Numerical Simulation

2009-04-20
2009-01-0478
Aerodynamic noise generated in a miniature car had been evaluated using numerical simulation. Large Eddy Simulation (LES) was applied to analyze the transient flow field and the Ffowcs Williams-Hawkings (FW-H) acoustic analogy was employed to conduct acoustic analysis. The time accurate flow data was obtained using a finite volume flow solver on an unstructured grid. The flow field around the rear view mirror was obtained by numerical for two cases with different side view mirrors. Moreover, the distribution of acoustic source was predicted on side windows, and the aerodynamic noise was lowed through optimizing the shape of the rear view mirror and some experiments were done to validate the effect. Present study ascertained the feasibility and applicability of finite volume method (FVM) with SGS model towards prediction of aerodynamic noise generated in production vehicle.
Technical Paper

Multi-Objective Discrete Robust Optimization for Pedestrian Head Protection

2020-04-14
2020-01-0934
Optimization design for vehicle front-end structures has proven rather essential and been extensively used to improve the vehicle performance. Nevertheless, the front-end structure needs to meet the requirement of both pedestrian safety and structural stiffness which are somewhat contradicting to each other. Furthermore, an optimal design could become less meaningful or even unacceptable when some uncertainties present. In the paper, a multi-objective discrete robust optimization (MODRO) algorithm is used to minimize the injury of head and maximize the structural stiffness involving uncertainties. MODRO algorithm is achieved by coupling grey relational analysis (GRA) and principal component analysis (PCA) with Taguchi method. The optimized result shows that the MODRO algorithm improved performance of pedestrian head injury and robustness of the vehicle front-end structure.
Technical Paper

Multi-dimensional Simulation of Air/Fuel Premixing and Stratified Combustion in a Gasoline Direct Injection Engine with Combustion Chamber Bowl Offset

2006-11-13
2006-32-0006
A multidimensional numerical simulation method was developed to analyze air/fuel premixing, stratified combustion and NOx emission formation in a gasoline direct injection (GDI) engine. Firstly, many submodels were integrated into one Computational Fluid Dynamics (CFD) code: ICFD-CN, such as Sarre nozzle flow, Kelvin-Helmholtz (KH) dynamic jet model, Taylor-Analogy Breakup (TAB) model, Rayleigh-Taylor (RT) droplet breakup model, Lefebvre fuel vaporization model, Liu droplet drag & distortion model, Gosman turbulence & droplet dispersion model, O'rourke wall film model, O'rourke and Bracco droplet impinging & coalescence model, Stanton spray/wall impinging model, the Discrete Particle Ignition Kernel(DPIK)ignition model, the single step combustion and the patulous Zeldovich model for NOx generation mechanism. The integrated CFD code was then calibrated against experimental data in a gasoline direct injection engine for several engine operating conditions.
Technical Paper

Reliability Optimal Design of B-pillar in Side Impact

2016-04-05
2016-01-1523
The traditional deterministic optimal design is mostly based on meeting regulatory requirements specified in impact standards, without taking the randomness of the impact velocity and angle at the real world situation into consideration. This often leads to the optimization results that converge to the boundary constraints, thus cannot meet the reliability requirements of the product design. Structure members of B-pillar (e.g. inner panel, outer panel, and the reinforcing plate) play a major role in the side impact safety performance. This paper dealt with optimization of B-pillar by considering its dimensions and materials as the design variables, and the impact velocity and angle from real-world traffic accident conditions as the random variable inputs. Using a combination of design of experiment, response surface models, reliability theory and the reliability of design optimization method, a B-pillar was constructed based on the product quality engineering.
Technical Paper

Robust Braking/Driving Force Distribution and Active Front Steering Control of Vehicle System with Uncertainty

2011-09-13
2011-01-2145
Uncertainties present a large concern in actual vehicle motion and have a large effect on vehicle system control. We attempt a new robust control design approach for braking/driving force distribution and active front steering of vehicle system with uncertain parameters. The braking/driving force distribution control is equivalently studied as the integral direct yaw moment control. Then the control design is carried out by using a state-space vehicle model with embedded fuzzy uncertainties. By taking the compensated front wheel steering angle and the direct yaw moment as the control inputs, a feedback control that aims to compensate the system uncertainty is proposed. In a quite different angle, we employ fuzzy descriptions of the uncertain parameters. The controlled system performance is deterministic, and the control is not if-then rules-based. Fuzzy descriptions of the uncertain parameters are used to find an optimal control gain.
Technical Paper

Optimization of the Realizable k - ε Turbulence Model Especially for the Simulation of Road Vehicle

2012-04-16
2012-01-0778
Realizable k-ε turbulence model has been used widely for engineering development. In this turbulence model, the default values of empirical coefficients such as C₂, σk and σε are obtained from some particular experiments. They are a good choice for most simulations-though may be not the best choice for simulating the aerodynamic characteristics of road vehicle. In order to improve the accuracy of simulation, a set of new empirical coefficients should be designed especially for simulating the aerodynamic characteristics of road vehicle. These empirical coefficients are found out by DoE (design of experiments) in this paper. Firstly the value range of empirical coefficients is decided by the laws that the aerodynamic force coefficients change with altering of empirical coefficients. Secondly 20 sets of empirical coefficients are obtained randomly by applying optimal Latin Hypercube method in Isight.
Technical Paper

Handling Stability Optimization of Mining Dump Truck Based on Parameter Identification

2013-04-08
2013-01-0702
Good handling stability becomes very important for heavily-laden electric wheel dump trucks that are operated on rough roads. To improve handling stability of mining dump trucks, nonlinear stiffness and nonlinear damping of the hydro-pneumatic suspension were considered as optimization variables. In this paper, based on the Daubechies wavelet's compactness and regularization and least-square method, the nonlinear stiffness and damping are identified. In order to verify the results of the parameter identification, the multi-body system dynamic model of the truck was built in ADAMS/view. By comparing the simulated results and tested ones, we find acceleration-history and power spectral density of acceleration are very close. And then, based on the approximate model method, the optimization model was built in ISIGHT. The nitrogen column and the orifice diameter were defined as the design variables. Finally, the handling stability was optimized by applying the genetic algorithms method.
Journal Article

Optimal Cooperative Path Planning Considering Driving Intention for Shared Control

2020-04-14
2020-01-0111
This paper presents an optimal cooperative path planning method considering driver’s driving intention for shared control to address target path conflicts during the driver-automation interaction by using the convex optimization technique based on the natural cubic spline. The optimal path criteria (e.g. the optimal curvature, the optimal heading angle) are formulated as quadratic forms using the natural cubic spline, and the initial cooperative path profiles of the cooperative path in the Frenet-based coordinate system are induced by considering the driver’s lane-changing intention recognized by the Support Vector Machine (SVM) method. Then, the optimal cooperative path could be obtained by the convex optimization techniques. The noncooperative game theory is adopted to model the driver-automation interaction in this shared control framework, where the Nash equilibrium solution is derived by the model predictive control (MPC) approach.
Technical Paper

Calibration and Stitching Methods of Around View Monitor System of Articulated Multi-Carriage Road Vehicle for Intelligent Transportation

2019-04-02
2019-01-0873
The around view monitor (AVM) system for the long-body road vehicle with multiple articulated carriages usually suffers from the incomplete distortion rectification of fisheye cameras and the irregular image stitching area caused by the change of relative position of the cameras on different carriages while the vehicle is in motion. In response to these problems, a set of calibration and stitching methods of AVM are proposed. First, a radial-distortion-based rectification method is adopted and improved. This method establishes two lost functions and solves the model parameters with the two-step optimization method. Then, AVM system calibration is conducted, and the perspective transformation matrix is calculated. After that, a static basic look-up table is generated based on the distortion rectification model and perspective transformation matrix.
Technical Paper

Research on Three Main Lightweight Approaches for Automotive Body Engineering Considering Materials, Structural Performances and Costs

2015-04-14
2015-01-0580
Lightweight automotive body can be obtained by developing new body constructions, using lightweight materials and structural optimizations, etc. Usually, lighter materials and structural optimizations are main aspects considered in lightweight automotive body engineering. In fact, material costs and manufacturability play more important roles than others in lightweight design. Three lightweight design approaches are considered. The first approach of lightweight design is to replace steels with lighter materials using equal rigidity design method. The second approach is a single objective optimization of mass reduction with materials selection and cost penalty. The third approach is a multi-objective optimization of mass reduction and cost reduction using multi-material concept. These three approaches are applied to an automotive body design problem considering the side impact. Different optimization methods are used to obtain different results.
Technical Paper

Simulation and Experimental Research on Compression Release Engine Brake Performance

2018-04-03
2018-01-1382
A 3D grid model of engine brake is established for an automobile engine. The dynamic compression release braking process is simulated by using this model. In the process of engine braking, the movement of valve and piston causes changes of the internal flow field of the engine. In this paper, the movement of valve and piston were defined by using the dynamic grid technology, so that the numerical simulation is closer to the actual situation via the updating of grid. Based on the relevant parameters of compression release engine brake (including the opening of the exhaust valve, the engine speed and the exhaust back pressure), the pressure and power of the compression release braking system were simulated under the conditions of multiple operating conditions and experimental verification was carried out. The results showed that the braking works of the compression release engine brake are mainly from the compression stroke and the exhaust stroke.
X