Refine Your Search

Topic

Author

Search Results

Journal Article

Mode-Dynamic Task Allocation and Scheduling for an Engine Management Real-Time System Using a Multicore Microcontroller

2014-04-01
2014-01-0257
A variety of methodologies to use embedded multicore controllers efficiently has been discussed in the last years. Several assumptions are usually made in the automotive domain, such as static assignment of tasks to the cores. This paper shows an approach for efficient task allocation depending on different system modes. An engine management system (EMS) is used as application example, and the performance improvement compared to static allocation is assessed. The paper is structured as follows: First the control algorithms for the EMS will be classified according to operating modes. The classified algorithms will be allocated to the cores, depending on the operating mode. We identify mode transition points, allowing a reliable switch without neglecting timing requirements. As a next step, it will be shown that a load distribution by mode-dependent task allocation would be better balanced than a static task allocation.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Real-Time Powertrain Control Strategy for Series-Parallel Hybrid Electric Vehicles

2007-08-05
2007-01-3472
The series-parallel hybrid electric vehicle(HEV), which employs a planetary gear set to combine one internal combustion engine(ICE) and two electric motors(EMs), can take advantages of both series and parallel hybrid system. The efficient powertrain operating point of the system can be obtained by the instantaneous optimization of equivalent fuel consumption. However, heavy computational requirements and variable constraints of the optimization process make it difficult to build real-time control strategy. To overcome the difficulty, this study suggests the control strategy which divides the optimization process into 2 stages. In the first stage, a target of charge/discharge power is determined based on equivalent fuel consumption, then in the second stage, an engine operating point is determined taking power transfer efficiency into account.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

Design of A Light Weight Suspension Component Using CAE

1998-02-23
980901
In this paper, a design procedure for the optimized light weight front cross member, which is a sub frame of the car chassis, without sacrificing basic functional requirements is presented. As the first step, optimal structural integrity was calculated and extracted using a CAE technique with the available volume constraint of the package layout. Quantitative design loads for the cross member was achieved by measurement. Dynamic load analysis using ADAMS was also performed to determine the loads. Later, these calculated loads were applied to the FEM stress analysis of the cross member. Furthermore, durability analysis was also performed using load profile database measured from ‘Hyundai Motor Co. Proving Ground’. Four constant amplitude durability tests and two static tests were performed on the cross member prototypes to confirm design reliability.
Technical Paper

The Effects of Injection Parameters on a Heavy-Duty Diesel Engine with TICS System

1998-02-23
981070
In this study, a series of tests have been carried out to evaluate the effects of the injection rate and timing on bsfc, NOx, and PM emissions in a heavy-duty diesel engine with TICS FIE system. Injection line pressure, cylinder pressure, NOx and smoke were measured with various injection times and injection rates. The injection rate was altered at a fixed injection timing, which could be realized either by changing the TICS setting time or by using different cam profiles. The injection time was varied by using TICS timing control function at a given setting time. A parametric study of the injection rate in in-line pump system was tried to correlate injection rate variations with combustion characteristics and emission. Two parameters, the injection pressure rising rate and the initially injected fuel quantity were introduced to characterize fuel injection.
Technical Paper

The Study of the Parameter of Roof Rack & Cross Bar for the Reduction of Wind Noise

2007-04-16
2007-01-0994
An increasing number of cars which are being used to foster leisure and a convenient life for consumers are being outfitted with roof racks and/or cross bars. This trend of installing roof racks is partly for the function of carrying objects on the roof of the vehicle and partly as a way to affect the style and exterior look of the vehicle. Therefore, the application of roof racks and cross bars is becoming increasingly important in the automotive industry. Because of the expanding application of roof racks on vehicles, the challenge of reducing wind noise caused by exposed cross bars becomes the main issue in this field. For solving this problem, the cross bar shape is designed and evaluated in the development stage, and if there is a problem, it is re-designed and re-evaluated many times. This repetitive corrective action is called “trial and error”.
Technical Paper

Model Based Optimization of Supervisory Control Parameters for Hybrid Electric Vehicles

2008-04-14
2008-01-1453
Supervisory control strategy of a hybrid electric vehicle (HEV) provides target powers and operating points of an internal combustion engine and an electric motor. To promise efficient driving of the HEV, it is needed to find the proper values of control parameters which are used in the strategy. However, it is very difficult to find the optimal values of the parameters by doing experimental tests, since there are plural parameters which have dependent relationship between each other. Furthermore variation of the test results makes it difficult to extract the effect of a specific parameter change. In this study, a model based parameter optimization method is introduced. A vehicle simulation model having the most of dynamics related to fuel consumption was developed and validated with various experimental data from real vehicles. And then, the supervisory control logic including the control parameters was connected to the vehicle model.
Technical Paper

Vehicle Drift Investigation during Straight Line Accelerating and Braking

2008-04-14
2008-01-0588
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. The multibody dynamic analysis of vehicle drift during accelerating and braking are performed. This paper focuses on modeling and evaluating effects of suspension parameters, differential friction, engine mounting and C.G. location of the vehicle under multibody dynamic simulation environment. Asymmetry of geometry and compliance between left and right side is considered cause of drift. The sensitivities of the suspension parameters are presented for each driving condition. In case of acceleration, the interaction of differential friction and driveshaft stiffness and their influence on drift are also studied. For braking condition, suspension parameters such as initial toe variation of rear coupled torsion beam axle type suspension and kingpin inclination deviation of front suspension are studied including the braking force difference.
Technical Paper

Dynamic Characteristics of Oil Consumption - Relationship Between the Instantaneous Oil Consumption and the Location of Piston Ring Gap

1998-10-19
982442
In order to understand the relationship between the location of piston ring gap and instantaneous change of oil consumption during engine operation, the ring rotation and instantaneous oil consumption were measured simultaneously in a hydrogen fueled single cylinder spark ignition engine. A radioactive-tracer technique was used to measure the rotational movement of piston ring. Two kinds of isotopes(60Co and 192Ir) with different energy level were mounted to the top and 2nd rings to measure each ring's movement independently. The instantaneous oil consumption was obtained by analyzing CO2 concentration in exhaust gas. From the result of ring rotational movement, typical patterns of ring rotation were obtained as follows; Rotational movements are usually initiated by changing the operating conditions. Piston rings tend to rotate easily under low load condition. The rotation speed of ring usually ranged in 0.2∼0.4 rev/min for top ring and 0.5∼0.6 rev/min for 2nd ring.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
Technical Paper

Estimation technique of air content in automatic transmission fluid by measurign effective bulk modulus

2000-06-12
2000-05-0107
It is well known that the entrained air in oil causes appreciable reduction in the stiffness of hydraulic systems. It makes the response delays of the systems and sometimes destroys the stability. Because the hydraulic systems used in most of automatic transmissions are operated in relatively low pressure and high temperature, it is very important to analyze the effects of the air included in automatic transmission fluid. However, it is hard to derive the generalized model to describe the effective bulk modulus theoretically or measure it in actual operating conditions of automatic transmissions. This paper reviews the previous studies of the air effects in hydraulic systems and the measurement techniques of the effective bulk modulus in operating conditions. Based on this work, the theoretical model with moderate complexity and the measurement technique of the effective bulk modulus considering entrained air effect at real operating conditions are suggested.
Technical Paper

Individual Cylinder Air-Fuel Ratio Estimation Algorithm for Variable Valve Lift (VVL) Engines

2010-04-12
2010-01-0785
In a multi-cylinder variable valve lift (VVL) engine, in spite of its high efficiency and low emission performance, operation of the variable valve lift brings about not only variation of the air-fuel ratio at the exhaust manifold, but also individual cylinder air-fuel ratio maldistribution. In this study, in order to reduce the air-fuel ratio variation and maldistribution, we propose an individual cylinder air-fuel ratio estimation algorithm for individual cylinder air-fuel ratio control. For the purpose of the individual cylinder air-fuel ratio estimation, air charging dynamics are modeled according to valve lift conditions. In addition, based on the air charging model, individual cylinder air-fuel ratios are estimated by multi-rate sampling from single universal exhaust gas oxygen (UEGO) sensor located on the exhaust manifold. Estimation results are validated with a one-dimensional engine simulation tool.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Development of Continuously Variable Valve Lift Engine

2010-04-12
2010-01-1187
In the present study, we developed a CVVL (Continuously Variable Valve Lift) engine. The CVVL mechanism is Hyundai Motor Company's own design, which is characterized by its compactness. The CVVL engine was developed without the increase of the engine height, thus the same hood line of the vehicle could be used with the base engine; the base engine does not adopt the CVVL technology, and it has the same engine specification other than valvetrain system. The CVVL mechanism was based on a six-linkage mechanism. Although the valvetrain friction of the CVVL engine of the six-linkage is higher than the base engine when operated with the same valve lift, it is in a competitive level compared to the other engines produced by HMC. The fuel consumption of the CVVL engine has been reduced by more than 5% compared to the base engine, and this is mainly thanks to the reduction of the pumping loss and friction.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Effects of Composite Sandwich Endplates on the Cold Start Characteristics of PEMFC

2010-04-12
2010-01-1091
End-plates are highly stiff plates that hold together the components composing a fuel cell stack, i.e. Membrane Electrode Assemblies (MEAs), Gas Distribution Layers (GDLs) and bipolar plates, offering sufficient contact pressure between them. The proper contact pressure is required not only to improve energy efficiency of a stack by decreasing ohmic loss but also to prevent leakage of fluids such as hydrogen, air, or coolant. When a fuel cell starts in cold environment, heat generated in a fuel cell stack as a result of electrochemical reactions should not be used much to increase the temperature of endplates but to melt ice inside the stack to prevent ice-blocking and to increase the temperature near the three-phase-boundary on MEAs. However, to satisfy the high stiffness required, massive metallic endplates have been used despite their inferior thermal characteristics: high thermal conductivity and large thermal inertia.
Technical Paper

Development of Urea-SCR System for Light-Duty Diesel Passenger Car

2001-03-05
2001-01-0519
Urea-SCR system consisted of combined deNOx catalysts with wide range of temperature window, injector, sensor and injection controller. Synthetic gas activity test and NOx conversion efficiency test on the engine bench were carried out to evaluate and improve the performance of this system. To better suit the application of the urea-SCR system without engine modification, temperature of catalyst and engine RPM were used as input data to control amounts of urea aqueous solution that reacts with NOx. We concentrated on designing types of deNOx catalysts and controlling amounts of urea solution under different driving conditions to achieve higher NOx reduction and wider temperature window. Designed urea-SCR system showed substantial NOx reduction performance and relatively wide temperature window under different driving conditions.
Technical Paper

Invisible Advanced Passenger-Side Airbag Door Design for Optimal Deployment and Head Impact Performance

2004-03-08
2004-01-0850
Hard panel types of invisible passenger-side airbag (IPAB) door system must be designed with a weakened area such that the airbag will deploy through the Instrument Panel (IP) in the intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test (ECE 21.01). If the advanced-airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of IPAB door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. We introduced the ‘Operating Window’ idea from quality engineering to design the hard panel types of IPAB door applied to the advanced-airbag for optimal deployment and head impact performance. To accurately predict impact performance, it is important to characterize the strain rate.
X