Refine Your Search

Topic

Author

Search Results

Journal Article

Development of Virtual Road Wheel Input Forces for Belgian Ground

2014-04-01
2014-01-0381
Numerical durability analysis is the only approach that can be used to assess the durability of vehicles in early stages of development. In these stages, where there are no physical prototypes available, the road wheel forces (or spindle forces) for durability testing on Belgian PG (Proving Ground) must be predicted by VPG (Virtual Proving Ground) or derived from the measured forces of predecessor vehicles. In addition, the tuning parts and geometry are not fixed at these stages. This results in the variation of spindle forces during the development stages. Therefore, it is not reasonable to choose the forces predicted at a specific tuning condition as standard forces. It is more reasonable to determine the standard forces stochastically using the DB of the measured forces of predecessor vehicles. The spindle forces measured or predicted on Belgian PG are typically stationary random.
Technical Paper

Development of an Automatic Climate Control(ACC) Algorithm and the Roof Mounted System for Busses

1998-11-16
982777
Air conditioning is defined as the process of treating air so as to control simultaneously its temperature, humidity, cleanliness and distribution to meet the requirements of the conditioned space. As in the definition, the important actions involved in the operation of an air conditioning system are temperature and humidity control, air purification and movement. For these conditions this paper proposes a Automatic Climate Control(ACC) system of the bus. The system has cooling, heating, and dehumidifying modes, and is governed by dual 8-bit microprocessors. These modes are broken down into sub-modules dealing with control of the compressor, blower speed, damper position, air purifier, ventilators, preheater, air mixing damper and so on.
Technical Paper

The development of the autonomous driving system for a car-to-car crash test

2000-06-12
2000-05-0210
To simulate the car-to-car crash accidents in the real field, the Autonomous Driving System was developed. This system consists of communicating, sensing, accelerating, braking, steering and data recording subsystems. All these were designed to be compact, light and collapsible, so that the crash characteristics of test vehicle were not affected. The velocity performance of the system covers from 10 kph to 100 kph within ± 0.5 kph error, and the lateral deviation is constrained within ± 20 mm. With this system, several frontal offset and side car-to-car crash tests were carried out successfully. Deformations, injury levels, deceleration signals and dynamic behaviors during crash were typically investigated. And the dynamic behaviors were compared with the simulation results of EDSMAC. Car-to-car crash tests between small and large vehicles with different masses were carried out and the effects on the compatibility were investigated.
Technical Paper

Development of finite element Euro-SID model

2000-06-12
2000-05-0197
In contrast to the other types of crash simulations, integrated analysis is needed to perform the side impact simulation, and the acquired injury values are so sensitive that they are difficult to assess by the deformed vehicle structure itself. Accurate FE Euro-side impact dummy (EURO-SID) model is needed to predict the various injury values in Euro side-impact simulation. In the past, rigid body model and coarse FE model have been used. The advantage of these models is low computing power. By the way, they have lack of injury predictability in integrated simulations. The deviations are caused by inaccurate geometry and improper material characteristics expression for individual components. Therefore, new Euro side-impact dummy model is developed through mass (inertia), component and sled validation. In this paper, validation results are illustrated, and their application results in two kinds of full car simulations are introduced.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Development of Continuously Variable Valve Lift Engine

2010-04-12
2010-01-1187
In the present study, we developed a CVVL (Continuously Variable Valve Lift) engine. The CVVL mechanism is Hyundai Motor Company's own design, which is characterized by its compactness. The CVVL engine was developed without the increase of the engine height, thus the same hood line of the vehicle could be used with the base engine; the base engine does not adopt the CVVL technology, and it has the same engine specification other than valvetrain system. The CVVL mechanism was based on a six-linkage mechanism. Although the valvetrain friction of the CVVL engine of the six-linkage is higher than the base engine when operated with the same valve lift, it is in a competitive level compared to the other engines produced by HMC. The fuel consumption of the CVVL engine has been reduced by more than 5% compared to the base engine, and this is mainly thanks to the reduction of the pumping loss and friction.
Technical Paper

Seat Common Frame Design Optimization

2010-04-12
2010-01-0390
Due to technological evolutions and social demands, motor vehicles are requested to be enhanced in terms of occupant safety and comfort. As a result, many countries are reinforcing crash regulations and new car assessment programs. Automotive seats are essential parts for providing passenger safety and comfort and have become most important. Many automotive companies concentrate on optimization of the seat structure. This paper presents an overview of the recent evolution of the seat structures and gives a development procedure covering seat frame design, optimization and validation. Through the study, a competitive frame design is drawn as a case result and a design guideline and a standard development procedure is established
Technical Paper

Effects of Composite Sandwich Endplates on the Cold Start Characteristics of PEMFC

2010-04-12
2010-01-1091
End-plates are highly stiff plates that hold together the components composing a fuel cell stack, i.e. Membrane Electrode Assemblies (MEAs), Gas Distribution Layers (GDLs) and bipolar plates, offering sufficient contact pressure between them. The proper contact pressure is required not only to improve energy efficiency of a stack by decreasing ohmic loss but also to prevent leakage of fluids such as hydrogen, air, or coolant. When a fuel cell starts in cold environment, heat generated in a fuel cell stack as a result of electrochemical reactions should not be used much to increase the temperature of endplates but to melt ice inside the stack to prevent ice-blocking and to increase the temperature near the three-phase-boundary on MEAs. However, to satisfy the high stiffness required, massive metallic endplates have been used despite their inferior thermal characteristics: high thermal conductivity and large thermal inertia.
Technical Paper

Invisible Advanced Passenger-Side Airbag Door Design for Optimal Deployment and Head Impact Performance

2004-03-08
2004-01-0850
Hard panel types of invisible passenger-side airbag (IPAB) door system must be designed with a weakened area such that the airbag will deploy through the Instrument Panel (IP) in the intended manner, with no flying debris at any required operating temperature. At the same time, there must be no cracking or sharp edges in the head impact test (ECE 21.01). If the advanced-airbag with the big difference between high and low deployment pressure ranges are applied to hard panel types of IPAB door system, it becomes more difficult to optimize the tearseam strength for satisfying deployment and head impact performance simultaneously. We introduced the ‘Operating Window’ idea from quality engineering to design the hard panel types of IPAB door applied to the advanced-airbag for optimal deployment and head impact performance. To accurately predict impact performance, it is important to characterize the strain rate.
Technical Paper

In search of SULEV-compliant THC emission reduction technologies

2000-06-12
2000-05-0298
This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spay atomization, quick warm-up through coolant control shut off, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean-burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, aftertreatment such as thin-wall catalyst, HC absorber and EHC and etc., through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.
Technical Paper

Powertrain-related vehicle sound development

2000-06-12
2000-05-0301
This paper reflects an efficient and comprehensive approach for vehicle sound optimization integrated into the entire development process. It shows the benefits of early consideration of typical vehicle NVH features and of intensive interaction of P/T and vehicle responsibilities. The process presented here considers the typical restriction that acoustically representative prototypes of engines and vehicles are not available simultaneously at the early development phase. For process optimization at this stage, a method for vehicle interior noise estimation is developed, which bases on measurements from the P/T test bench only, while the vehicle transfer behavior for airborne and structure-borne noise is assumed to be similar to a favorable existing vehicle. This method enables to start with the pre- optimization of the pure P/T and its components by focusing on such approaches which are mainly relevant for the vehicle interior noise.
Technical Paper

Modeling of Pulse Width Modulation Pressure Control System for Automatic Transmission

2002-03-04
2002-01-1257
Generally, the widely used hydraulic control system in automatic transmissions is pulse width modulation (PWM) type. It consists in a PWM solenoid valve and a reducing type second stage valve, so called pressure control valve (PCV), to amplify pressure or flow rate. In this study, the mathematical models of the PWM solenoid valve and the PCV with moderate complexity are proposed. Then, their behavior is analyzed from the steady state characteristics. Finally, we find that there are good matches between the dynamic simulation results and the experimental data.
Technical Paper

The Effects of Various Design Factors for Invisible Passenger-side Airbag Door Opening

2002-03-04
2002-01-0184
Invisible Passenger-side Airbag (IPAB) door systems must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. A predictive Finite Element Analysis (FEA) was carried out to calculate the effects of varying design factors (the length and thickness of kink-hinge, tear-line type and temperature) on the IPAB-door opening. The impact performance of plastic parts was considered, because the mechanical properties of thermoplastic materials are strongly dependent on strain rate.
Technical Paper

The Study of the Structure for the Head Protection on Front Pillar in Crash or Rollover of the Vehicle

2002-03-04
2002-01-0684
In order to meet FMVSS 201 (U) requirements, the upper vehicle interior structures with trim in a vehicle need to be properly designed to minimize injuries when head impacts these components. This paper presents a study of countermeasures in pillars using FEA approach by considering some design factors. Optimal designs are then selected for interior head impact protection based on CAE analysis using LS-DYNA non-linear finite element code.
Technical Paper

The Analysis of Relationship between Vehicle Drop & Dummy Injury

2016-04-05
2016-01-1539
Given the importance of vehicle safety, OEMs are focused on ensuring the safety of passengers during car accidents. Injury is related to the passenger’s kinematics and interaction with airbag, seatbelt, and vehicle drop. However, the correlation between vehicle drop (vehicle pitch) and passengers’ injury is the main issue recently being discussed. This paper presents the definition of vehicle drop and analyzes the relationship through a dynamic sled test. This study defines the relationship between individual vehicle systems (body, chassis, tire, etc.) and vehicle drop, and how to control the amount of vehicle drop to minimize the injury of passengers.
Technical Paper

Active Type Variable Intake System

2011-10-06
2011-28-0088
In this paper, an active type variable intake system is proposed, which improves both engine power and NVH performance. The proposed system uses a magnet valve to control the air path to the engine intake manifold. While other types of variable intake system such as vacuum actuator type or DC motor type need an ECU to control the valve, the proposed system only uses force equilibrium between magnetic force and vacuum pressure, resulting in weight and cost reduction. The system is composed of dual duct (duct A, duct B) and a magnet valve. In low RPM region, the magnet valve is closed and only duct A is used to supply air into the engine. In high RPM region the valve opens up and maximizes the amount of the air that goes into the engine intake manifold. The result is that the output power of the engine is maximized in high RPM region, as well as the NVH performance is improved in low RPM region.
Technical Paper

Optimization of the Crashworthiness of a Passenger Car Using Iterative Simulations

1993-11-01
931977
The paper describes an engineering project carried out to optimize the crashworthiness of an existing passenger car for frontal crash using a procedure relying on numerical simulation. An optimization target is defined in terms of an ideal acceleration pulse at the seats anchors. The acceleration time history and structural members are scanned in parallel to correlate the local acceleration peaks to specific structural members. Members details are iteratively modified in order to alter the accelerations and get closer to the target.
Technical Paper

A Predicting and Improvement of Side Impact Using the CC-CTP

1993-03-01
930443
Extensive researches are being performed on a world wide basis with the aim of enhancing occupant protection on the side impact. The test methodology for side impact can be divided into two general groups; Sub-System Tests Full Scale Tests. However, the advantages of full scale test is that it is possible to make an integrated statement on the protective potential of the structural stiffness of the struck vehicle and the padding for a selected collision speed and type of collision. The advantages of sub-system test methodology can be simulates more exactly for wide range of accident(i.e. collision directions, impact points etc.). The latter test procedure can be carried out at a relatively earlier stage in the development of a new vehicle, and also can be reduce the time and cost. The Computer Controlled Composite Test Procedure(CC-CTP) presented in this paper has been developed by CCMC (Committee of Common Market Automobile Constructors).
X