Refine Your Search

Topic

Author

Search Results

Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

Noble Materials for Thin-Walled Bumper Fascia with Enhanced Processibility and Dimensional Stability

1998-02-01
980105
A new noble material for automotive bumper fascia has been developed by compounding of ethylene-propylene block copolymers with ethylene-α-olefin copolymers and some additives. Also mineral fillers are added, if necessary. This material is suitable for injection molding of large parts including automotive bumper fascia. By using selected rubbers which have proper melt viscosity, molecular weight, and co-monomer content, and adding modified polymer containing polar group, it has enhanced processibility and paintability maintaining general properties such as tensile strength, impact strength at low temperature, and thermal and UV stability. The remarkable characteristics of this material is good processibility compared to the conventional TPOs. This material has especially high melt flow index(20∼30g/10min at 230°C) and stable flow behavior at the processing conditions.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study on the Distortion Characteristic Due to Spot Welding of Body structure Assembly for Passenger Car

2002-07-09
2002-01-2022
In this paper, the distortion analysis in spot welded area of car body - front side member, it is found out that the optimum condition for panel assembly is closely related to the welding sequence, location of clamping system, number, shape and welding force. The distortion resulting from welding sequence is minimized starting from the surroundings of the clamping system and in the way that the value of the welding force is from large to small. The MCP is determined from the positions inducing the minimum distortion in panel through calculating the deformation and reacting force of the panel. The welding force originating from the manufacturing tolerance of assembly is a critical design factor determining the welding sequence and the clamping system that yield minimum distortion in spot welding of body panel.
Technical Paper

Evaluation of Collapse Absorption Capability for Hydroformed Tubes

2002-07-09
2002-01-2130
The tube hydroforming technology (THF) has been extensively used as auto-body structural members such as engine cradle, frame rail etc. in order to meet the urgent need of vehicle weight and cost reduction as well as high quality. In this paper we experimentally investigate the mechanical properties for hydroformed tubes with various bulging strains under the plane strain mode. Axial compression tests for hydroformed tubes are performed to investigate the collapse load and collapse absorption capacity through the collapse load-displacement curves. Moreover the collapse absorption capacities are compared and discussed between as-received, hydroformed, and press formed tubes. Results demonstrate that the hydroformed tubes show higher collapse absorption capability in comparison with the as-received tube and the press formed tube, because of its high yield strength due to strain hardening.
Technical Paper

Optimization for Brake Feeling in Vehicle without Brake Noise

2016-09-18
2016-01-1928
Recently, upon customer’s needs for noise-free brake, carmakers are increasingly widely installing damping kits in their braking systems. However, an installation of the damping kits may excessively increase softness in the brake system, by loosening stroke feeling of a brake pedal and increasing compressibility after durability. To find a solution to alleviate this problem, we first conducted experiments to measure compressibility of shims by varying parameters such as adhesive shims (e.g., bonding spec., steel and rubber thickness), piston’s shapes (e.g., different contact areas to the shims), and the numbers of durability. Next, we installed a brake feeling measurement system extended from a brake pedal to caliper. We then compared experimental parameters with brake feeling in a vehicle. Finally, we obtained an optimized level of brake feeling by utilizing the Design for Six Sigma (DFSS).
Technical Paper

Transient Nonlinear Full-Vehicle Vibration Analysis

2017-03-28
2017-01-1553
This paper presents a transient vibration analysis of a nonlinear full-vehicle. The full-vehicle model consists of a powertrain, a trimmed body, a drive line, and front and rear suspensions with tires. It is driven by combustion forces and runs on a road surface. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preload due to gravitational force, large deformation, and material nonlinearity which cannot be properly treated in the conventional steady state analysis. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence. The validation starts with component levels such as tires, springs, shock absorbers, and a powertrain, and then the full-vehicle model is constructed. Model validation is done in two aspects; one is model accuracy and the other is model efficiency.
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

New 1.4ℓ SI Engine Development with the Aluminum Thermal Spray Coated Counter Spiny Thin-Wall Cast Iron Liner

2013-10-14
2013-01-2641
For the lightweight and compact cylinder block, new cast iron liner was developed, which has counter spiny form on the out side of the liner. Additionally, the outer surface was spray-coated with Aluminum in order to enhance the heat conductivity and to increase the grip force between the liner and the block. Without any redesign of cylinder block or crankshaft, the displacement of the engine could be increased from 1.25ℓ to 1.4ℓ by adapting this new liner only. This liner enabled to expand the engine displacement without both great dimension changes and production facility changes.
Technical Paper

Strength Analysis and Fatigue Life Prediction of an Extra Large Dump Truck Deck and Subframe

2013-04-08
2013-01-1211
An engineering strategy to develop a new 27-ton dump truck is introduced in the process of design and analysis. Main engineering concerns in development of the new dump truck are focused on reducing weight as much as 180kg without deteriorating structural strength and fatigue life of its upper body - deck and subframe. To achieve this goal, a stress analysis and a fatigue life prediction based on CAE technique are employed at the early stage of design process. A finite element model of the full vehicle was constructed for the strength analysis. Then the fatigue life was predicted through the strength analysis and an S-N curve of high strength steel. The S-N curve for welded structures made of high strength steel was used along with a prototype vehicle's endurance test in order to set strength targets. As a result, the upper body was successfully developed without any fatigue issues.
Technical Paper

The Analysis of Crack Mechanism and Estimate of Life Time by the Vibration Measurement of Stainless Exhaust Manifold in Firing Condition

2013-10-14
2013-01-2643
SUS exhaust manifold is weaker than cast iron in aspect of high temperature vibration. So as to improve reliability of SUS exhaust manifold and get over gas temperature limit, exhaust manifold vibration mode and level has to be decreased. And because of error and limit of conventional modal analysis, we measured vibration mode and level of SUS exhaust manifold directly in engine firing condition. To measure vibration of hot parts(600∼800°C) in engine, we used special cooling device at base of accelerometer. Thus we developed analysis method of SUS exhaust manifold crack mechanism. We came to know the accurate vibration mode and level of SUS exhaust manifold in hot condition. Besides, we found out in proportion as vibration level increases endurance life decreases.
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Corrosion Induced Brake Torque Variation: The Effect from Gray Iron Microstructure and Friction Materials

2005-10-09
2005-01-3919
Brake judder caused by corrosion of gray iron disks was investigated. In this study, the microstructure of the gray iron disks and the friction film developed on the disk surface by commercial friction materials were examined to find the root cause of the corrosion induced brake torque variation. Corrosion of the disk was carried out in an environmental chamber, simulating in-vehicle disk corrosion. Moisture content and acidity of the friction materials were also taken into account for this investigation and brake tests to examine torque variation during brake applications were performed using a single-end brake dynamometer. Results showed that the friction film developed on the disk surface strongly affected the amount of corrosion, while graphite morphology of the gray iron had little effect on the corrosion.
Technical Paper

Full Aluminum Body Design Considering Part-Specific Requirements

2023-04-11
2023-01-0603
In the era of electric vehicles(EVs), the need for weight reduction of the vehicle body is increasing in order to maximize the driving distance of the EV. Accordingly, there is an increasing need for research to efficiently apply lightweight materials, such as aluminum and CFRP, to the EV body parts. In this study, design methodologies and optimization measures to increase lightweight efficiency when applying lightweight materials to EVs will be discussed. Based on theoretical basis and basic performance of each part of the EV, the “Material Substitution Method” of replacing existing parts of a steel body with aluminum materials will be defined, and the optimal design process on how to overcome performance trade-off caused by material characteristics will be addressed. In applying the “Material Substitution Method” to the actual EV body design process, it was possible to convert 93% of the components from steel to aluminum and reduce the overall weight of the body by 23%.
Technical Paper

Improvement of Fatigue Strength of Automatic Transmission Gear by Developing Controlled Rolled Alloy Steel

2000-03-06
2000-01-0614
The controlled rolling process has been introduced to increase strength and toughness of alloy steels for the application of transmission gear. Cr-Mo alloy steel containing 0.02% Nb was controlled rolled in the temperature range of 870-970°C, showed fine austenite grain size, about ASTM No.11, resulted from the effects of recrystallization and Nb(C,N) precipitation. To investigate the effects of grain refinement on mechanical properties, several tests were conducted for the newly developed controlled rolled steel and conventional Ni-Cr-Mo alloy steel after carburizing. The new steel showed 2.1 times higher pitting resistance than the conventional steel. Fatigue limits of new and conventional steels were 950 and 930 MPa respectively. Charpy impact energy of new steel was improved about 35% compared with the conventional steel. Consequently, the pinion gear from the new steel instead of conventional one showed enhanced performance, especially pitting resistance, in dynamometer test.
Technical Paper

Development of Aluminum Suspension Part using by High Pressure Casting of Electro-Magnetic Stirring

2018-04-03
2018-01-1394
The weight reduction of the car suspension parts has a direct influence on the ride and handling. However, the application of nonferrous metal materials, such as aluminum and magnesium, which results in a lighter weight of the suspension can lead to an increase in manufacturing costs compared to cast iron. In this study, vertical type high-pressure die casting using by electro-magnetic stirring (EMS) with A356 alloy in the sleeve was used to control the fine microstructure. Process optimization and part development, as well as unit product and automotive assessment were carried out for electro-magnetic stirring methods. Without making the slurry, the mechanical properties were obtained through optimization of process variables UTS 320MPa, YS 239MPa, EL 13.3%. It also succeeded in mass production with minimum cost increase of aluminum suspension components.
Technical Paper

The CAE Analysis of a Cylinder Head Water Jacket Design for Engine Cooling Optimization

2018-04-03
2018-01-1459
Hyundai's new engine is developed which optimize the cooling efficiency for knocking improvement and friction reduction. The cooling concepts for this purpose are 1) equalizing the temperature among cylinders by flow optimization, 2) cooling the required area intensively, 3) adopting ‘active flow control’ and 4) enlarging fuel economy at high speed range. In order to realize the cooling concept, 1) cross-flow, 2) compact water jacket & exhaust cooling, 3) flow control valve and 4) cylinder head with integrated exhaust manifold are considered. Improvement of knocking and friction reduction by increased cooling water temperature makes fuel efficiency possible. On the other hand, in order to strengthen the cooling around the combustion chamber and to reduce the deviation among the combustion chamber of cylinders, it is required to design the head water jacket shape accordingly.
Technical Paper

A Development of the Holographic Lighting

2019-04-02
2019-01-0846
A signal lamp performs a function to inform the position and behavior of the vehicle. And it represents a specific design identity of the vehicle or brand identity. Recently it implements the unique three-dimensional effect while using a LED. However, a number of LEDs and complex form of the lens shape have to be applied, so results in the size, weight, cost increase. In this study, the hologram technology that is an exemplary technique for implementing the described three-dimensional image is applied. With a hologram, it is possible to reproduce a complex shape three-dimensional image by using a hologram film. Therefore the number of parts can be reduced. And it is possible to copy the film has a mass production benefits.
Technical Paper

Development of Two-Shot Injection-Compression Soft Instrument Panel

2015-03-10
2015-01-0065
In order to reduce the cost and weight of the soft-foamed instrument-panel (IP), we developed the new IP which is made by the 2 kinds of injection methods. One is the compression-injection with back-foamed foil inserted, and the other is two-shot injection with the passenger-side airbag (PAB) door. We named it ‘IMX-IP’ which means that all components (‘X’) of the IP with different resins are made In a Mold. The development procedure of this technology was introduced (1) Design of the new injection mold through TRIZ application, (2) Optimization of the injection conditions and back foamed-foil for minimizing the foam loss and thickness deviation, (3) Development of CAE method for two-shot injection compression, (4) Reliability performance test and application to the mass production. The reduction of the processes through the two-shot molding with back foamed-foil inserted made it possible to enhance soft feeling on IP and reduce the cost and weight simultaneously.
X