Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Direct Injection of CNG on High Compression Ratio Spark Ignition Engine: Numerical and Experimental Investigation

2011-04-12
2011-01-0923
CNG is one of the most promising alternate fuels for passenger car applications. CNG is affordable, is available worldwide and has good intrinsic properties including high knock resistance and low carbon content. Usually, CNG engines are developed by integrating CNG injectors in the intake manifold of a baseline gasoline engine, thereby remaining gasoline compliant. However, this does not lead to a bi-fuel engine but instead to a compromised solution for both Gasoline and CNG operation. The aim of the study was to evaluate the potential of a direct injection spark ignition engine derived from a diesel engine core and dedicated to CNG combustion. The main modification was the new design of the cylinder head and the piston crown to optimize the combustion velocity thanks to a high tumble level and good mixing. This work was done through computations. First, a 3D model was developed for the CFD simulation of CNG direct injection.
Technical Paper

A Semi-Physical NOx Model for Diesel Engine Control

2013-04-08
2013-01-0356
In this paper, a new physics-based model for the prediction of NOx emissions produced by diesel engines is presented. The aim of this work is to provide a reference model for the validation of control strategies and NOx estimators. The model describes the NOx production in the burned gas zone where the burned gas temperature sub-model is adapted to be generic and tunable. The model consists of three main sub-models for the estimation of the burned gas temperature, the concentration of the species in the burned gases and the NOx formation, respectively. A new model for estimating the burned gas temperature, known to have a strong impact on thermal NOx formation rate, is proposed. The model depends on the intake burned gas ratio and the combustion phasing computed from the cylinder pressure. This model has a limited number of calibration parameters identified so that NOx model output matches with experimental data measured in a four-cylinder, four-stroke, direct-injection diesel engine.
Technical Paper

Optimal Online Energy Management for Diesel HEV: Robustness to Real Driving Conditions

2013-04-08
2013-01-1471
This paper addresses the robustness of an optimal online energy management for diesel hybrid electric vehicle (HEV). Optimal strategy is based on the Equivalent Consumption Minimization Strategy (ECMS). Optimal torque split between engine and electric motor is found by minimizing fuel consumption and Nitrogen Oxides (NOx) emissions. Online adaptation is made in order to ensure battery charge sustainability and good driveability when driving conditions are unknown. The strategy is tested in simulation over one hundred driving cycles representative of real-world conditions. Results obtained with the online strategy are compared with those of an offline optimal strategy (knowing the driving cycle a priori). Even if a slight degradation is noticed in comparison to optimal case, fuel economy and NOx reduction - provided by hybridization - are conserved with the online strategy.
Technical Paper

Intake System Diagnosis for Diesel Engine with Dual-Loop EGR

2012-04-16
2012-01-0904
This paper proposes a method to detect an intake manifold leakage for a Diesel engine with a dual loop EGR system. The intake manifold leak has a strong impact on the engine performances by changing the intake manifold burned gas ratio. This fault is analyzed according to the control structure used and also according to the EGR operating mode. The paper proposes a diagnosis algorithm to detect the intake manifold leak in sequential or simultaneous use of the two EGR paths. The sensors considered are the mass air flow meter, the intake manifold pressure sensor, the exhaust equivalence ratio sensor and the differential pressure sensor (across the HP EGR valve). The diagnosis is based on a criteria that uses the redundancy between these sensors and air system models or estimators. The diagnosis threshold depends on the engine operating conditions as well as the sensor or model dispersions.
Technical Paper

State of the Art and Analysis of Control Oriented NOx Models

2012-04-16
2012-01-0723
Future pollutant emissions legislations are expected to be increasingly stringent. To reduce Nitrogen Oxides (NOx) emissions produced by Diesel engines, advanced combustion technologies - like Low Temperature Combustion (LTC) -, vehicle hybridization and NOx after-treatment systems - such as Selective Catalytic Reduction (SCR) systems - can be considered, leading to a growing demand for NOx models. In this paper, we present a state-of-art of the different existing NOx models, from the black-boxes to the three-dimensional Computational Fluid Dynamics (CFD) codes. A way to classify these models is proposed. The paper also introduces the current applications for each subgroup of models. Then, a black-box and two grey-box NOx models are studied regarding their accuracy and their sensitivity to model inputs. These models are validated for two Diesel engines on steady-state operating points as well as on transient operations. The semi-physical models accurately predict NOx emissions.
Technical Paper

Selection of the Most Promising Alternative Fuels for Aircraft Development: ALFA-BIRD Proposal

2011-10-18
2011-01-2791
Air traffic has been steadily increasing for the last years. Moreover, fuel availability at a reasonable cost seems more and more uncertain. Climate change implies that greenhouse gases emissions should be reduced. In this context, the search for new alternative fuels for aircraft seems to be a promising solution. Nevertheless, aeronautic represents a very specific transportation mode, due to its usage (short range, middle range, long range with the same fuel, worldwide distribution of the fuel…) and its compulsory security constraints. In the first part of the European project ALFA-BIRD (Alternative Fuels and Biofuels for Aircraft development - FP7), a selection of the best candidates to become the fuels for the future of aircraft has been done. The selection process was very complex, due to multiple criteria (physical properties, economical issued, environmental issues…).
Technical Paper

Refinement and Validation of the Thermal Stratification Analysis: A post-processing methodology for determining temperature distributions in an experimental HCCI engine

2014-04-01
2014-01-1276
Refinements were made to a post-processing technique, termed the Thermal Stratification Analysis (TSA), that couples the mass fraction burned data to ignition timing predictions from the autoignition integral to calculate an apparent temperature distribution from an experimental HCCI data point. Specifically, the analysis is expanded to include all of the mass in the cylinder by fitting the unburned mass with an exponential function, characteristic of the wall-affected region. The analysis-derived temperature distributions are then validated in two ways. First, the output data from CFD simulations are processed with the Thermal Stratification Analysis and the calculated temperature distributions are compared to the known CFD distributions.
Technical Paper

Automatic Body Fitted Hybrid Mesh Generation for Internal Combustion Engine Simulation

2014-04-01
2014-01-1133
An automatic mesh generation process for a body fitted 3D CFD code is presented in this paper along with the methodology to guarantee the mesh quality. This tool named OMEGA (Optimized MEsh Generation Automation) uses a direct coupling procedure between the IFP-C3D solver and a hybrid mesher Centaur. Thanks to this automatic procedure, the engineering time needed for body fitted 3D CFD simulation in internal combustion engines is drastically reduced from a few weeks to a few hours. Valve and piston motion laws are just given as input files and geometries and meshes are automatically moved and generated. Unlike other procedures, this automatic mesh generation does not use an intermediate geometry discretization (STL file, tetrahedral surface mesh) but directly the original CAD that has been modified thanks to the geometry motion functionalities integrated into the mesher.
Technical Paper

A Sectional Soot Model for RANS Simulation of Diesel Engines

2014-04-01
2014-01-1590
In this paper, a sectional soot model coupled to a tabulated combustion model is compared with measurements from an experimental engine database. The sectional soot model, based on the work of Vervisch-Klakjic (Ph.D. thesis, Ecole Centrale Paris, Paris, 2011) and Netzell et al. (P. Combust. Inst., 31(1):667-674, 2007), has been implemented into IFPC3D (Bohbot et al., Oil Gas Sci Technol, 64(3):309-335, 2009), a 3D RANS solver. It enables a complex modeling of soot particles evolution, in a 3D Diesel simulation. Five distinct source terms are applied to each soot section at any time and any location of the flow. The inputs of the soot model are provided by a tabulated combustion model derived from the Engine Approximated Diffusion Flame (EADF) one (Michel and Colin, Int. J. Engine Res., 2013) and specifically modified to include the minor species required by the soot model.
Technical Paper

Potential of Naphtha-like Fuel on an Existing Modern Compression Ignition Engine

2015-09-01
2015-01-1813
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOX and particulates emissions when used in diesel engines. Indeed, fuels highly resistant to auto-ignition provide more time for fuel and air mixing prior to the combustion and therefore a more homogeneous combustion. Nevertheless, major issues still need to be addressed, particularly regarding UHC and CO emissions at low load and particulate/noise combustion trade-off at high load. The purpose of this study is to investigate how an existing modern diesel engine could be operated with low-cetane fuels and define the most appropriate Cetane Number (CN) to reduce engine-out emissions. With this regard, a selection of naphtha and gasoline blends, ranging from CN30/RON 57 to CN35/RON 41 was investigated on a Euro 5, 1.6L four-cylinder engine. Results were compared to the conventional diesel running mode using a minimum NOX level oriented calibration, both in steady state and transient conditions.
Technical Paper

An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations

2016-04-05
2016-01-0604
The 3-Zones Extended Coherent Flame Model (ECFM3Z) and the Tabulated Kinetics for Ignition (TKI) auto-ignition model are widely used for RANS simulations of reactive flows in Diesel engines. ECFM3Z accounts for the turbulent mixing between one zone that contains compressed air and EGR and another zone that contains evaporated fuel. These zones mix to form a reactive zone where combustion occurs. In this mixing zone TKI is applied to predict the auto-ignition event, including the ignition delay time and the heat release rate. Because it is tabulated, TKI can model complex fuels over a wide range of engine thermodynamic conditions. However, the ECFM3Z/TKI combustion modeling approach requires an efficient predictive spray injection calculation. In a Diesel direct injection engine, the turbulent mixing and spray atomization are mainly driven by the liquid/gas coupling phenomenon that occurs at moving liquid/gas interfaces.
Technical Paper

Potential of CN25 Naphtha-Based Fuel to Power Compression Ignition Engines

2016-04-05
2016-01-0765
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in Diesel engines. In this context, straight-run naphtha, a refinery stream directly derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. The current study is one step further toward naphtha-based fuel to power compression ignition engines. The potential of a cetane number 25 fuel (CN25), resulting from a blend of hydro-treated straight-run naphtha CN35 with unleaded non-oxygenated gasoline RON91 was assessed. For this purpose, investigations were conducted on multiple fronts, including experimental activities on an injection test bed, in an optically accessible vessel and in a single cylinder engine. CFD simulations were also developed to provide relevant explanations.
Technical Paper

Study of ECN Injectors’ Behavior Repeatability with Focus on Aging Effect and Soot Fluctuations

2016-04-05
2016-01-0845
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
Technical Paper

Development of a Quasi-Dimensional Spray Evaporation and Mixture Formation Model for Direct-Injection Spark-Ignition Engines

2015-09-06
2015-24-2471
This paper presents a phenomenological quasi-dimensional model of the processes that lead to charge preparation in a Direct-Injection Spark-Ignition (DI-SI) engine, focusing on the physics of atomization and drop evaporation, spray development and the mutual interaction between these phenomena. Atomization and drop evaporation are addressed by means of constant-diameter drop parcels, which provide a discrete drop-size distribution. A discrete Probability Density Function (PDF) approach to fuel/air mixing is proposed, based on constant-mixture-fraction classes that interact with each other and with the drop parcels. The model has been developed in the LMS Imagine.Lab Amesim™ system simulation platform for multi-physical modeling and integrated in a generic SI combustion chamber submodel, CFM1D [15], of the IFP-Engine library.
Technical Paper

Innovative Approach and Tools to Design Future Two-Wheeler Powertrain

2015-11-17
2015-32-0763
As congestion increases and commute times lengthen with the growing urbanization, many customers will look for effective mobility solutions. Two-wheeler are one of the solutions to deal with these issues, in particular if equipped with electrified powertrains for minimized local noise and air pollutant emissions. Scooters powertrain technology is predominantly based on Spark Ignition Engine (ICE) associated with a Continuously Variable Transmissions (CVT) and a Centrifugal Clutch. Nevertheless, even though CVT gives satisfaction in simplicity, fun to drive, cost effectiveness and vehicle dynamics, its efficiency is an undeniable drawback. Indeed, a conventional CVT is wasting more than 50% of ICE effective power in customer driving conditions. Consequently, those vehicles have high fuel consumption relative to their size, and are equipped with overpowered and heavy internal combustion engines, allowing a large area for further improvements.
Technical Paper

The Dual Flame Model (DFM) : A Phenomenological 0D Diesel Combustion Model to Predict Pollutant Emissions

2015-09-06
2015-24-2388
IFP Energies nouvelles (IFPEN) has a large experience in the development of engine simulation platforms. During the last decade, the Dual Flame Model (DFM), a physical 0-dimensional (0D) combustion model designed for Diesel applications, was developed and continuously improved. The DFM formalism allows to represent quite precisely the in-cylinder combustion process scenario, by accounting for the first order relevant physics impacting fuel oxidation. First of all, this allows to account for the impact of engine actuators on combustion (e.g. injection systems performing complex injection strategies, Low Pressure and High Pressure EGR loops,…) and then to describe the pollutant emissions formation processes, being chemical kinetics strongly dependent on the in-cylinder thermochemical conditions. The aim of this communication is to present the potential of using the DFM model in the different stages of a Diesel engine development process for pollutant emissions optimization.
Technical Paper

An ICE Map Generation Tool Applied to the Evaluation of the Impact of Downsizing on Hybrid Vehicle Consumption

2015-09-06
2015-24-2385
Legal constraints concerning CO2 emissions have made the improvement of light duty vehicle efficiency mandatory. In result, vehicle powertrain and its development have become increasingly complex, requiring the ability to assess rapidly the effect of several technological solutions, such as hybridization or internal combustion engine (or ICE) downsizing, on vehicle CO2 emissions. In this respect, simulation is nowadays a common way to estimate a vehicle's fuel consumption on a given driving cycle. This estimation can be done with the knowledge of vehicle main characteristics, its transmission ratio and efficiency and its internal combustion engine fuel consumption map. While vehicle and transmission parameters are relatively easy to know, the ICE consumption map has to be obtained through either test bench measurements or computation.
Technical Paper

Modeling of a Thermal Management Platform of an Automotive D.I Diesel Engine to Predict the Impact of Downsizing and Hybridization during a Cold Start

2014-04-01
2014-01-0657
Thermal management is a key issue to minimize fuel consumption while dealing with pollutant emissions. It paves the way for developing new methods and tools in order to assess the effects of warm up phase with different drivetrains architectures and to define the most suitable solution to manage oil and coolant temperatures. DEVICE (Downsized hybrid Diesel Engine for Very low fuel ConsumptIon and CO2 Emissions) project consists in designing hybrid powertrain to cut off significantly CO2 emissions. It combines a 2-cylinder engine with an electric motor and a 7-gear dual clutch transmission. Hybridization and downsizing offer a great improvement of fuel economy and it is valuable to study their effects on thermal management. Hence, a dedicated AMESim platform is developed to model the fluids temperatures as well as the energy balance changes due to the powertrain architecture.
Technical Paper

How to Improve Light Duty Diesel Based on Heavy Duty Diesel Thermodynamic Analysis?

2013-04-08
2013-01-1623
The Diesel engine has now become a vital component of the transport sector, in view of its performance in terms of efficiency and therefore CO2 emissions some 25 % less than a traditional gasoline engine, its main competitor. However, the introduction of more and more stringent regulations on engine emissions (NOx, PM) requires complex after-treatment systems and combustion strategies to decrease pollutant emissions (regeneration strategies, injection strategies, …) with some penalty in fuel consumption. It becomes necessary to find new ways to improve the Diesel efficiency in order to maintain its inherent advantage. In the present work, we are looking for strategies and technologies to reduce Diesel engine fuel consumption. Based on the observation that large Diesel engines have a better efficiency than the smaller ones, a detailed thermodynamic combustion analysis of one Heavy Duty (HD) engine and two Passenger car (PC) engines is performed to understand these differences.
X