Refine Your Search

Topic

Search Results

Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

2010-04-12
2010-01-1015
Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Journal Article

A Methodology for Characterization of the Strain Rate-Dependent Behavior of PU Foam

2014-04-01
2014-01-0539
Polymeric foams are known to be sensitive to strain rate under dynamic loads. Mechanical characterization of such materials would not thus be complete without capturing the effect of strain rate on their stress-strain behaviors. Consistent data on the dynamic behavior of foam is also necessary for designing energy-absorbing countermeasures based on foam such as for vehicle occupant safety protection. Strain rates of the order of 100-500 s−1 are quite common in such design applications; strain rates of this range cannot be obtained with an ordinary UTM (universal testing machine) and a special test set-up is usually needed. In the current study, a unique approach has been suggested according to which quasi-static tests at low strain rates and low velocity drop tests at medium strain rates are utilized to arrive at an empirical relation between initial peak stress and logarithm of strain rate for a rigid closed-cell PU foam.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Journal Article

Practical Versus RSM-Based MDO in Vehicle Body Design

2012-04-16
2012-01-0098
Multidisciplinary Design Optimization (MDO) is of great significance in the lean design of vehicles. The present work is concerned with the objective of cross-functional optimization (i.e. MDO) of automotive body. For simplicity, the main goal adopted here is minimizing the weight of the body meeting NVH and crash safety targets. The stated goal can be achieved following either of two different ways: classic response surface method (RSM) and practical MDO methodology espoused recently. Even though RSM seems to be able to find a design point which satisfies the constraints, the problem is with the time associated with running such CAE algorithms that can provide a single optimal solution for multi-disciplinary areas such as NVH and crash safety.
Technical Paper

A Combined CFD and Flow Network Modeling Approach for Vehicle Underhood Air Flow and Thermal Analysis

2009-04-20
2009-01-1150
Conventional CFD analysis for underhood thermal management is quite involved and time consuming because of the complex geometry and flow distributions. As an alternative to full scale CFD modeling, a hybrid method of vehicle underhood air flow and thermal analysis is presented in this paper, using the principle of flow network modeling (FNM) and CFD. In the present method, the entire flow domain in underhood is broken into various air flow passages, which are represented in a FNM model by nodes and links. For each individual air flow passage selected, CFD analysis is carried out to obtain the pressure drop (ΔP) vs. flow rate (Q) relation by considering various air flow rates, leading to a characteristic curve for each passage. The distribution of flow rates and pressure is then determined by FNM through solving 1D mass and momentum conservation equations over the entire flow network.
Technical Paper

CFD Modeling of In-Cylinder Fuel-Air Mixing in a CNG-Fuelled SI Engine with Port Gas Injection

2010-09-28
2010-32-0003
The concept of fuel-air mixture stratification is evaluated for a single cylinder, 200-cc CNG-fuelled SI engine with port gas injection (PGI). A detailed study based on three-dimensional computational fluid dynamics (CFD) modeling has been reported. Fuel-air stratification was observed in case of PGI compared to premixed fuel-air mixture formed by a conventional gas carburetor system. Overall stratification of more than 15% was observed for PGI between the rich and lean zones in the combustion chamber compared to less than 1% in case of premixed gas carburetor. It was observed that the gas injection location, direction, timing, duration and injection pressure have a significant effect on stratification pattern.
Technical Paper

Effects of Unloading and Strain Rate on Headform Impact Simulation

2004-03-08
2004-01-0738
The current paper presents improvements of a previous single-degree-of-freedom lumped parameter model with a nonlinear spring that could be used for preliminary design of headform impact safety countermeasures for normal impact with negligible headform rotation. The unloading taking place along the elastic path has been dispensed with and a parabolic unloading path may yield more realistic force-deformation and deceleration-time behaviors when compared with test results. The effects of the modified unloading behavior on HIC(d) are illustrated with examples. Additionally, a new velocity-dependent yield force criterion is adopted for the spring element to represent strain rate sensitive countermeasures. It is observed that inclusion of strain rate effect can either increase or decrease predicted HIC(d) when compared with using only quasi-static yield force.
Technical Paper

An Efficient Hybrid Approach for Design of Automotive Wheel Bearings

2011-04-12
2011-01-0091
Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques.
Technical Paper

A Study on Combined Effects of Road Roughness, Vehicle Velocity and Sitting Occupancies on Multi-Occupant Vehicle Ride Comfort Assessment

2017-03-28
2017-01-0409
It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
Technical Paper

Prediction of the Behaviors of Adhesively Bonded Steel Hat Section Components under Axial Impact Loading

2017-03-28
2017-01-1461
Adhesively bonded steel hat section components have been experimentally studied in the past as a potential alternative to traditional hat section components with spot-welded flanges. One of the concerns with such components has been their performance under axial impact loading as adhesive is far more brittle as compared to a spot weld. However, recent drop-weight impact tests have shown that the energy absorption capabilities of adhesively bonded steel hat sections are competitive with respect to geometrically similar spot-welded specimens. Although flange separation may take place in the case of a specimen employing a rubber toughened epoxy adhesive, the failure would have taken place post progressive buckling and absorption of impact energy.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

2016-04-05
2016-01-1520
The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

Development Of A Practical Multi-disciplinary Design Optimization (MDO) Algorithm For Vehicle Body Design

2016-04-05
2016-01-1537
The present work is concerned with the objective of developing a process for practical multi-disciplinary design optimization (MDO). The main goal adopted here is to minimize the weight of a vehicle body structure meeting NVH (Noise, Vibration and Harshness), durability, and crash safety targets. Initially, for simplicity a square tube is taken for the study. The design variables considered in the study are width, thickness and yield strength of the tube. Using the Response Surface Method (RSM) and the Design Of Experiments (DOE) technique, second order polynomial response surfaces are generated for prediction of the structural performance parameters such as lowest modal frequency, fatigue life, and peak deceleration value. The optimum solution is then obtained by using traditional gradient-based search algorithm functionality “fmincon” in commercial Matlab package.
Technical Paper

A Study on Ride Comfort Assessment of Multiple Occupants using Lumped Parameter Analysis

2012-04-16
2012-01-0053
Growing consumer expectations continue to fuel further advancements in vehicle ride comfort analysis including development of a comprehensive tool capable of aiding the understanding of ride comfort. To date, most of the work on biodynamic responses of human body in the context of ride comfort mainly concentrates on driver or a designated occupant and therefore leaves the scope for further work on ride comfort analysis covering a larger number of occupants with detailed modeling of their body segments. In the present study, governing equations of a 13-DOF (degrees-of-freedom) lumped parameter model (LPM) of a full car with seats (7-DOF without seats) and a 7-DOF occupant model, a linear version of an earlier non-linear occupant model, are presented. One or more occupant models can be coupled with the vehicle model resulting into a maximum of 48-DOF LPM for a car with five occupants.
Technical Paper

An Assessment of Load Cell- and Accelerometer-Based Responses in a Simulated Impact Test

2014-04-01
2014-01-0198
Load cells and accelerometers are commonly used sensors for capturing impact responses. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers when these are mounted on a moving impactor. In the present work, evaluation of the responses obtained from a drop-weight impact testing set-up for an axially loaded specimen has been carried out with the aid of an equivalent lumped parameter model (LPM) of the set-up. In this idealization, a test component such as a steel double hat section subjected to axial impact load is represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impactor comprising a hammer and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a true behavior of a specimen.
Journal Article

Flow-Acoustic Analysis of the Perforated-Baffle Three-Chamber Hybrid Muffler Configurations

2015-01-14
2015-26-0131
In this work, the noise attenuation characteristics of a three-chamber U-bend hybrid muffler have been investigated. Acoustic performance is quantified by the Transmission Loss (TL) parameter. One-dimensional Transfer Matrix based Muffler Program (TMMP) and three-dimensional Finite Element Method (FEM) have been used for the prediction of the TL of the muffler. Presence of perforated baffles necessitates use of the Integrated Transfer Matrix (ITM) approach for the one-dimensional analysis because the sound fields in the adjacent chambers would be multiply coupled with each other, and for the 3D FEM analysis LMS Virtual Lab software has been used. The mean flow distribution in each of these configurations has been evaluated by means of a lumped flow resistance network. The resulting values of the grazing flow and bias flow have been used to calculate the perforates' acoustic impedance.
Technical Paper

Behavior of Adhesively Bonded Steel Double-Hat Section Components under Lateral Impact Loading

2018-04-03
2018-01-1447
Recent experimental studies on the behavior of adhesively-bonded steel double-hat section components under axial impact loading have produced encouraging results in terms of load-displacement response and energy absorption when compared to traditional spot-welded hat- sections. However, it appears that extremely limited study has been carried out on the behavior of such components under transverse impact loading keeping in mind applications such as automotive body structures subject to lateral/side impact. In the present work, lateral impact studies have been carried out in a drop-weight test set-up on adhesively-bonded steel double-hat section components and the performance of such components has been compared against their conventional spot-welded and hybrid counterparts. It is clarified that hybrid components in the present context refer to adhesively-bonded hat-sections with a few spot welds only aimed at preventing catastrophic flange separations.
Technical Paper

A 3D Simulation Methodology for Predicting the Effects of Blasts on a Vehicle Body

2019-04-02
2019-01-1033
Triggered explosions are increasingly becoming common in the world today leading to the loss of precious lives under the most unexpected circumstances. In most scenarios, ordinary citizens are the targets of such attacks, making it essential to design countermeasures in open areas as well as in mobility systems to minimize the destructive effects of such explosive-induced blasts. It would be rather difficult and to an extent risky to carry out physical experiments mimicking blasts in real world scenarios. In terms of mechanics, the problem is essentially one of fluid-structure interaction in which pressure waves in the surrounding air are generated by detonating an explosive charge which then have the potential to cause severe damage to any obstacle on the path of these high-energy waves.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
X