Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Computed Structure of a Combusting Transient Jet Under Diesel Conditions

1998-02-23
981071
Numerical computations of combusting transient jets are performed under diesel-like conditions. Discussions of the structure of such jets are presented from global and detailed points of view. From a global point of view, we show that the computed flame heights agree with deductions from theory and that integrated soot mass and heat release rates are consistent with expected trends. We present results of several paramaters which characterise the details of the jet structure. These are fuel mass fractions, temperature, heat release rates, soot and NO. Some of these parameters are compared with the structure of a combusting diesel spray as deduced from measurements and reported in the literature. The heat release rate contours show that the region of chemical reactions is confined to a thin sheet as expected for a diffusion flame. The soot contour plots appear to agree qualitatively with the experimental observations.
Technical Paper

A Wall-Modified Flamelet Model for Diesel Combustion

2004-03-08
2004-01-0103
In this paper, a wall-modified interactive flamelet model is developed for improving the modeling of Diesel combustion. The objective is to include the effects of wall heat loss on the transient flame structure. The essential idea is to compute several flamelets with several representative enthalpy defects which account for wall heat loss. Then, the averaged flamelet profile can be obtained through a linear fit between the flamelets according to the enthalpy defect of the local gas which results from the wall heat loss. The enthalpy defect is estimated as the difference between the enthalpy in a flamelet without wall heat loss, which would correspond to the enthalpy in the gas without wall heat loss, and the gas with wall heat loss. The improved model is applied to model combustion in a Diesel engine. In the application, two flamelets, one without wall heat loss and one with wall heat loss, are considered.
Technical Paper

Predictions of On-Engine Efficiency for the Radial Turbine of a Pulse Turbocharged Engine

2001-03-05
2001-01-1238
Modern pulse-turbocharged systems produce a turbine operating environment that is dominated by unsteady flow. Effective utilization of the unsteady exhaust gas energy content at the turbine inlet is critical to achieving optimum system efficiency. This work presents predictions for turbocharger unsteady performance from a model based on the Euler equations with source terms (EEST). This approach allows the time-accurate performance of the turbine to be determined, allowing comparisons of actual energy utilization and that estimated from steady flow performance maps.
Technical Paper

Simultaneous Biodegradation of a Two-Phase Fluid: Discolored Biofilm Issues

2006-07-17
2006-01-2256
Three replicate aerobic-heterotrophic biotrickling filters were designed to promote the simultaneous biodegradation of graywater and a waste gas containing NH3, H2S and CO2. Upon visual observation of discolored solids, it was originally hypothesized that gas-phase CO2 concentrations were excessive, causing regions of anoxic zones to form within the biotrickling filters. Observed discolored (black) biofilm of this nature is typically assumed to be either lysed bacterial cells or anaerobic regions, implying alteration of operational conditions. Solid (biofilm) samples were collected in the presence and absence of gas-phase wastestream(s) to determine if the gas-phase contaminants were contributing to the solid-phase discoloration. Two sets of experiments (shaker flask and solids characterization) were conduced to determine the nature of the discolored solids. Results indicated that the discolored solids were neither anaerobic bacteria nor lysed cells.
Technical Paper

Lattice Boltzmann Simulations of Flows in a Duct with Multiple Inlets

2003-03-03
2003-01-0220
In this paper, computations of pulsating flows in a duct with multiple inlets using the lattice Boltzmann method (LBM) are reported. As future emissions standards present a significant challenge for Diesel engine manufacturers, several options are being investigated to identify strategies to meet such regulations. Exhaust gas aftertreatment is one of the most important among them. As the performance of the various aftertreatment devices is sensitive to the flow conditions in the exhaust, a greater understanding of the flows under pulsating conditions in the presence of multiple cylinders is needed. The Lattice Boltzmann Method (LBM) is a relatively new and promising computational approach for applications to fluid dynamics problems. Two advantages of the method relative to traditional methods are ease of implementation and ease of parallelization and performance on parallel computers.
Technical Paper

Evaluation of Biological Trickling Filter Performance for Graywater Treatment in ALS Systems

2005-07-11
2005-01-3023
The Bioregenerative Air Treatment for Health system has been proposed for Advanced Life Support (ALS) planetary base applications. The system will be operated as a biotrickling filter to simultaneously treat graywater and waste gas. Preliminary experiments have focused on carbon removal from a graywater simulant. Six bench scale biotrickling filter reactors were constructed and monitored continuously. After a reactor startup phase of 40 days, the average total organic carbon (TOC) removal for reactors packed with Tri-packs® packing material was 62%. A second set of experiments was designed to evaluate TOC removal using different packing materials (Bee-cell and Biobale). It was hypothesized that the alternative packing materials would reduce the effects of channeling in the reactors, thus improving TOC removal. However, TOC removal did not significantly improve during the second set of experiments.
Journal Article

Graphene Coating as a Corrosion Protection Barrier for Metallic Terminals in Automotive Environments

2021-04-06
2021-01-0354
Inside an automobile, hundreds of connectors and electrical terminals in various locations experience different corrosive environments. These connectors and electrical terminals need to be corrosion-proof and provide a good electrical contact for a vehicle’s lifetime. Saltwater and sulfuric acid are some of the main corrosion concerns for these electrical terminals. Currently, various thin metallic layers such as gold (Au), silver (Ag), or tin (Sn) are plated with a nickel (Ni) layer on copper alloy (Cu) terminals to ensure reliable electrical conduction during service. Graphene due to its excellent chemical stability can serve as a corrosion protective layer and prevent electrochemical oxidation of metallic terminals. In this work, effects of thin graphene layers grown by plasma-enhanced chemical vapor deposition (PECVD) on Au and Ag terminals and thin-film devices were investigated. Various mechanical, thermal/humidity, and electrical tests were performed.
X