Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Monitoring NO2 Production of a Diesel Oxidation Catalyst

2012-01-24
A combination of laboratory reactor measurements and vehicle FTP testing has been combined to demonstrate a method for diagnosing the formation of NO2 from a diesel oxidation catalyst (DOC). Using small cores from a production DOC and simulated diesel exhaust, the laboratory reactor experiments are used to support a model for DOC chemical reaction kinetics. The model we propose shows that the ability to produce NO2 is chemically linked to the ability of the catalyst to oxidize hydrocarbon (HC). For thermally damaged DOCs, loss of the HC oxidation function is simultaneous with loss of the NO2 production function. Since HC oxidation is the source of heat generated in the DOC under regeneration conditions, we conclude that a diagnostic of the DOC exotherm is able to detect the failure of the DOC to produce NO2. Vehicle emissions data from a 6.6 L Duramax HD pick-up with DOC of various levels of thermal degradation is provided to support the diagnostic concept.
Video

High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine

2012-02-16
This session focuses on kinetically controlled combustion. Experimental and simulation studies pertaining to various means of controlling combustion are welcome. Examples are research studies dealing with temperature and composition distribution inside the cylinder and their impact on heat release process. Studies clarifying the role of fuel physical and chemical properties in autoignition are also welcome. Presenter Hanho Yun, General Motors Company
Video

Technical Keynote: Leading in Crazy Times

2012-02-09
Leading during normal times is plenty challenging. Leading in crazy times requires extra understanding and skill. This presentation explores how you and your team can be your best, regardless of what craziness may be going on around your organization, your team members, and you. Presenter Theresa Rich, General Motors Company
Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Video

OBD Challenges for Plug In Hybrid Electric Vehicles

2012-01-30
Plug-In Hybrid and Extended Range Electric Vehicle's have quickly become the focus of many OEM's and suppliers. Existing regulations and test procedures did not anticipate this rapid adoption of this new technology, resulting in many product development challenges. The lack of clear requirements is further complicated by CARBs consideration of CO2 inclusion in their next light duty OBD regulation. This presentation provides an overview of the regulatory requirements for OBD systems on hybrid vehicles that intend to certify in California. Near term challenges for EREV?s and PHEV?s are discussed, including concerns with the existing denominator and warm-up cycle calculations. Some proposals are made to address these concerns. Presenter Andrew Zettel, General Motors Company
Video

Worldwide OBD

2012-01-30
OBD system requirements were first developed by the California Air Resources Board, the U.S. Environmental Protection Agency, and the European Commission. New OBD requirements should be as consistent as possible with existing requirements to maximize reliability and to minimize system complexity, proliferation of configurations, and consumer cost. New OBD requirements from around the world are briefly reviewed and most are consistent with the original U.S. and European requirements. Worldwide OBD requirements are being further harmonized under the United Nations, Economic Commission for Europe, World Forum for Harmonization of Vehicle Regulations (WP29). Presenter David H. Ferris, General Motors Company
Technical Paper

Influence of Catalyst Performance on Car Emissions in Urban Congested Traffic

1997-05-01
971604
A reason of the lack of agreement between measured pollutants concentration in the air of urban areas and vehicle pollutant emissions evaluated by available emission models is the fact that catalyst performance variability is not considered. In this paper, an experimental study on the effect of performance variability of catalyst on emissions is presented. Average emissions have been measured using driving cycles representative of different levels of urban traffic, determined by statistical methods on the basis of data detected on-road by an instrumented car. For each driving cycle, representative of a certain traffic level, different thermal starting conditions of catalyst have been tested. These conditions have been determined by the characterization of catalyst performance at steady state and are representative of real catalyst conditions experienced on the road.
Technical Paper

Experimental Evaluation of Fuel Consumption and Emissions in Congested Urban Traffic

1995-10-01
952401
In this paper, first results regarding measurements of fuel consumption and emissions, relative to different traffic conditions and a specific urban area, are presented. The experimental approach used for the evaluation of emissions consists in: a) recording on-road car and engine operating conditions during designed trips performed in the center of Naples (Italy) by an instrumented car, b) determining by multivariate statistical analysis driving cycles characterizing typical traffic conditions, c) measuring emissions and fuel consumption in laboratory using defined driving cycles. Fuel flow rate measurements are performed at each second, while emissions are detected along a cycle and an average value per kilometer is obtained. Operating conditions of engine during laboratory testing are related to on-road operating conditions by comparing fuel consumption and exhaust gases temperatures measurements performed on-road and in laboratory by the same device.
Technical Paper

Two Dimensional Analysis of Diesel Combustion by Spectral Flame Emissivity Measurements

1996-02-01
960838
Spectral flame emissivity and absorption measurements with high temporal and spatial resolution were performed in an optically accessible high-swirl divided-chamber Diesel system. Simultaneous determination of soot temperature, soot volume fraction and the OH radical concentration were made from the start to the end of the combustion in 153 locations equally distributed in the chamber. The engine was run at 2000 rpm and at fixed air-fuel ratio realizing 200 consecutive combustion cycles. To visualize the spatial and temporal spray and flame evolution, direct high-speed photographic sequences were taken at 8000 frames/s. The photographic sequences showed that the spray is strongly distorted and mixed by very high swirl resulting in a well premixed region where the combustion starts. The OH radicals were detected in the fuel reaction zone. Moreover OH concentration and soot volume fraction are well correlated with soot temperature.
Technical Paper

An Assessment of Predictivity of CFD Computations of Combustion and Pollutants Formation in D.I. Diesel Engines

1996-10-01
962055
In the present paper the status of development of diesel combustion and pollutants formation modelling at Diesel Engines and Fuels Research Division of Istituto Motori is pointed out. The main features and performances of the model are discussed comparing the numerical results with some experimental data. For the experiments a single cylinder direct injection diesel engine was used. In the head of the engine two small quartz windows have been mounted, in order to obtain pictures of the injection and combustion processes by high speed cinematography, and to apply the two colour technique for soot temperature and soot loading measurements. The soot loading was measured by the two colour technique and the a priori and the experimental uncertainties of the measurement technique were carefully evaluated. In addition, the engine may be also equipped with a second head, in which a fast acting valve allows the direct sampling of the combustion products.
Technical Paper

Three Dimensional Calculations of DI Diesel Engine Combustion and Comparison whit In Cylinder Sampling Valve Data

1992-10-01
922225
A modified version of KIVA II code was used to perform three-dimensional calculations of combustion in a DI diesel engine. Both an ignition delay submodel and a different formulation of the fuel reaction rate were implemented and tested. The experiments were carried out on a single cylinder D.I. diesel of 0.75 I displacement equipped with sensors to detect injection characteristics and indicated pressure. A fast acting sampling valve was also installed in the combustion chamber to allow the measurement of main pollutants during the combustion cycle, by an ensemble average technique. Computational and experimental results are compared and the discrepancies are discussed. Today the demand for light duty engines that produce less emission and consume less fuel is increasing. Thus, if limits on CO2 emissions are established, the direct injection diesel engine for light duty applications will become an attractive option.
Technical Paper

The Influence of Fuel Composition on Particulate Emissions of DI Diesel Engines

1993-10-01
932733
The effect of different fuel parameters on emissions is difficult to understand, the response depending upon different engine technologies. In addition the isolation of some of the fuel variables is often very hard. The present paper discusses the main results obtained testing a matrix of 14 fuels designed for obtain large variations of cetane number, sulphur and aromatic contents of Diesel oil. The aromatic structure of fuels and its effect on particulate emissions was also investigated. A linear regression analysis was performed in order to isolate the main controlling factors on particulate emissions. Finally the influence of aromatic contents of fuel on unregulated emissions was also assessed.
Technical Paper

Soot Formation and Oxidation in a DI Diesel Engine: A Comparison Between Measurements and Three Dimensional Computations

1993-10-01
932658
Three dimensional computations of Diesel combustion were performed using a modified version of Kiva II code. The autoignition and combustion model were tuned on a set of experimental conditions, changing the engine design, the operating conditions and the fuel characteristics. The sensitivity of the model to the different test cases is acceptable and the experimental trends are well reproduced. In addition the peak of pressure and temperature computed by the code are quite close to the experimental values, as well as the pressure derivatives. Once tuned the combustion model constants, different but simple formulations for the soot formation and oxidation processes were implemented in the code and compared with the experimental measurements obtained both with fast sampling technique and two colors method. These formulations were found unable to give good prediction in a large range of engine operating conditions, even if the model tuning may be very good for each test point.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Experimental and Numerical Analysis of a High-Pressure Outwardly Opening Hollow Cone Spray Injector for Automotive Engines

2017-03-28
2017-01-0840
In the aim of reducing CO2 emissions and fuel consumption, the improvement of the diesel engine performance is based on the optimization of the whole combustion system efficiency. The focus of new technological solutions is devoted to the optimization of thermodynamic efficiency especially in terms of reduction of losses of heat exchange. In this context, it is required a continuous development of the engine combustion system, first of all the injection system and in particular the nozzle design. To this reason in the present paper a new concept of an open nozzle spray was investigated as a possible solution for application on diesel engines. The study concerns some experimental and numerical activities on a prototype of an open nozzle. An external supplier provided the prototypal version of the injector, with a dedicated piezoelectric actuation system, and with an appropriate choice of geometrical design parameters.
Technical Paper

Experimental Investigation of Fuel Film Characteristics of Ethanol Impinging Spray at Ultra-Low Temperature

2017-03-28
2017-01-0851
Increasing the injection pressure in DISI engine is an efficient way to obtain finer droplets but it will also potentially cause spray impingement on the cylinder wall and piston. Consequently, the fuel film sticking on the wall can dramatically increase the soot emission of the engine especially in a cold start condition. On the other hand, ethanol is widely used as an alternative fuel in DI engine due to its sustainable nature and high octane number. In this study, the fuel film characteristics of single-plume ethanol impinging spray was investigated. The experiments were performed under ultra-low fuel/plate temperature to simulate the cold start condition in cold areas. A low temperature thermostatic bath combined with specially designed heat exchangers were used to achieve ultra-low temperature for both the impinging plate and the fuel. Laser induced fluorescence (LIF) technique was employed to measure the thickness of fuel film deposited on the impinging plate.
Technical Paper

Ultra-High Speed Fuel Tracer PLIF Imaging in a Heavy-Duty Optical PPC Engine

2018-04-03
2018-01-0904
In order to meet the requirements in the stringent emission regulations, more and more research work has been focused on homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) or partially premixed compression ignition (PCCI) as they have the potential to produce low NOx and soot emissions without adverse effects on engine efficiency. The mixture formation and charge stratification influence the combustion behavior and emissions for PPC/PCCI, significantly. An ultra-high speed burst-mode laser is used to capture the mixture formation process from the start of injection until several CADs after the start of combustion in a single cycle. To the authors’ best knowledge, this is the first time that such a high temporal resolution, i.e. 0.2 CAD, PLIF could be accomplished for imaging of the in-cylinder mixing process. The capability of resolving single cycles allows for the influence of cycle-to-cycle variations to be eliminated.
Technical Paper

Effect of Hydrogen Enrichment on Flame Morphology and Combustion Evolution in a SI Engine Under Lean Burn Conditions

2018-04-03
2018-01-1144
Uncertainty of fuel supply in the energy sector and environmental protection concerns have motivated studies on clean and renewable alternative fuels for vehicles as well as stationary applications. Among all fuel candidates, hydrogen is generally believed to be a promising alternative, with significant potential for a wide range of operating conditions. In this study, a comparison was carried out between CH4, two CH4/H2 blends and two mixtures of CO and H2, the last one taken as a reference composition representative of syngas. It is imperative to fully understand and characterize how these fuels behave in various conditions. In particular, a deep knowledge of how hydrogen concentrations affect the combustion process is necessary, given that it represents a fundamental issue for the optimization of internal combustion engines. To this aim, flame morphology and combustion stability were studied in a SI engine under lean burn conditions.
X