Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Investigation of Transient Temperature Oscillations of a Propylene Loop Heat Pipe

2001-07-09
2001-01-2235
A technology demonstration propylene Loop Heat Pipe (LHP) has been tested extensively in support of the implementation of this two-phase thermal control technology on NASA’s Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) instrument. This cryogenic instrument is being developed at the Jet Propulsion Laboratory (JPL) for NASA. This paper reports on the transient characterization testing results showing low frequency temperature oscillations. Steady state performance and model correlation results can be found elsewhere. Results for transient startup and shutdown are also reported elsewhere. In space applications, when LHPs are used for thermal control, the power dissipation components are typically of large mass and may operate over a wide range of power dissipations; there is a concern that the LHP evaporator may see temperature oscillations at low powers and over some temperature range.
Technical Paper

Development of the Third Generation JPL Electronic Nose for International Space Station Technology Demonstration

2007-07-09
2007-01-3149
The capabilities of the JPL Electronic Nose have been expanded to include characteristics required for a Technology Demonstration schedule on the International Space Station (ISS) in 2008-2009 [1,2]. Concurrently, to accommodate specific needs on ISS, the processes, tools and analyses which influence all aspects of development of the device have also been expanded. The Third Generation ENose developed for this program uses two types of sensor substrates, newly developed inorganic and organic sensor materials, redesigned electronics, onboard near real-time data analysis and power and data interfaces specifically for ISS. This paper will discuss the Third Generation ENose with a focus on detection of mercury in the parts-per-billion range.
Technical Paper

Trace Gas Analyzer for Extra-Vehicular Activity

2001-07-09
2001-01-2405
The Trace Gas Analyzer (TGA, Figure 1) is a self-contained, battery-powered mass spectrometer that is designed for use by astronauts during extravehicular activities (EVA) on the International Space Station (ISS). The TGA contains a miniature quadrupole mass spectrometer array (QMSA) that determines the partial pressures of ammonia, hydrazines, nitrogen, and oxygen. The QMSA ionizes the ambient gas mixture and analyzes the component species according to their charge-to-mass ratio. The QMSA and its electronics were designed, developed, and tested by the Jet Propulsion Laboratory (1,2). Oceaneering Space Systems supported JPL in QMSA detector development by performing 3D computer for optimal volumetric integration, and by performing stress and thermal analyses to parameterize environmental performance.
Technical Paper

Mars Exploration Rover Surface Mission Flight Thermal Performance

2005-07-11
2005-01-2827
NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degrees East longitude on January 4, 2004 (Squyres, et al., Dec. 2004). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., Aug. 2004). Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 5. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (aereocentric longitude, Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160, Sol 398A).
X