Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

A One-Dimensional Model for Square and Octo-Square Asymmetric Particulate Filters with Correct Description of the Channel and Wall Geometry

2018-04-03
2018-01-0951
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater capacity for ash. Somewhat surprisingly, very few models for asymmetric PFs have been published and none of these gives a correct/detailed description of the geometry. For example, octahedral channels may be treated as if they were square or the tapering walls between the inlet and outlet channels treated as if they were rectangular in cross section. Alternatively, the equations may be presented in generic form in terms of channel cross-sectional areas and perimeters, but without giving any indication of how to calculate these. This paper aims to address these deficiencies with a model that correctly describes the geometry of square and octo-square asymmetric PFs. Expressions for the solid fraction of the PF (which affects thermal mass) and channel cross section and perimeter (both when clean and soot/ash loaded) are presented.
Technical Paper

The Design of Flow-Through Diesel Oxidation Catalysts

1993-03-01
930130
Progress made in reducing engine-out particulate emissions has prompted a revival in the design of flow-through oxidation catalysts for diesel engine applications. Effort in this area has focused primarily in the area of SOF control for the further reduction of particulate emissions. The work reported here covers some of the catalyst design parameters important for SOF and gas phase pollutant control. This is illustrated with both laboratory reactor and engine evaluation data for several formulary and operating parameters. Platinum-based catalysts are shown to be generally the most active, but they require treatments or additives to reduce the inherently high activity of platinum for the oxidation of SO2 present in the exhaust. The effect of additives and their loading on the oxidation activity of Pt/alumina for HC, CO, SOF and SO2 oxidation is discussed in detail and additives are identified which reduce SO2 oxidation with minimal effect on HC, CO or SOF oxidation activity.
Technical Paper

The Use of Palladium in Advanced Catalysts

1995-02-01
950259
New advanced Pd only, Pd:Rh and Pt:Pd:Rh catalysts are compared with a current platinum rhodium catalyst after poisoning and thermal ageing. The results indicate that at equivalent precious metal cost (at 1994 prices) the advanced palladium based catalysts achieve significantly improved performance compared with current Pt, Rh and Pd technology. The new Pd:Rh formulation is recommended for close coupled locations and the Pt:Pd:Rh formulation recommended for underfloor locations where residual fuel lead may be present. The formation of H2S is shown to be low with the palladium based catalysts. Finally, it is shown that the new catalysts with balanced oxidation and reduction capability perform better in multi-brick systems than addition of a highly loaded palladium only front brick.
X