Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Challenges for Spark Ignition Engines in Heavy Duty Application: a Review

Spark Ignition (SI) engines operating on stoichiometric mixtures can employ a simple three-way catalyst as after-treatment to achieve low tailpipe emissions unlike diesel engines. This makes heavy duty (HD) SI engines an attractive proposition for low capital cost and potentially low noise engines, if the power density and efficiency requirement could be met. Specific torque at low speeds is limited in SI engines due to knock. In HD engines, the higher flame travel distances associated with higher bore diameters exacerbates knock due to increased residence time of the end gas. This report reviews the challenges in developing HD SI engines to meet current diesel power density. It also focuses on methods to mitigate them in order to achieve high thermal efficiency while running on stoichiometric condition. High octane renewable fuels are seen as a key enabler to achieve the performance level required in such applications.
Technical Paper

Future Fuels for DISI Engines: A Review on Oxygenated, Liquid Biofuels

Global warming and climate change have led to a greater interest in the implementation of biofuels in internal combustion engines. In spark ignited engines, biofuels have been shown to improve efficiency and knock resistance while decreasing emissions of unburned hydrocarbons, carbon monoxide and particles. This study investigates the effect of biofuels on SI engine combustion through a graphical compilation of previously reported results. Experimental data from 88 articles were used to evaluate the trends of the addition of different biofuels in gasoline. Graphs illustrating engine performance, combustion phasing and emissions are presented in conjunction with data on the physiochemical properties of each biofuel component to understand the observed trends. Internal combustion engines have the ability to handle a wide variety of fuels resulting in a broad range of biofuel candidates.
Technical Paper

Agglomeration and Nucleation of Non-Volatile Particles in a Particle Grouping Exhaust Pipe of a Euro VI Heavy-Duty Diesel Engine

The possibility of non-volatile particle agglomeration in engine exhaust was experimentally examined in a Euro VI heavy duty engine using a variable cross section agglomeration pipe, insulated and double walled for minimal thermophoresis. The agglomeration pipe was located between the turbocharger and the exhaust treatment devices. Sampling was made across the pipe and along the centre-line of the agglomeration pipe. The performance of the agglomeration pipe was compared with an equivalent insulated straight pipe. The non-volatile total particle number and size distribution were investigated. Particle number measurements were conducted according to the guidelines from the Particle Measurement Programme. The Engine was fuelled with commercially available low sulphur S10 diesel.