Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Effect of Engine Operating Parameters on Hydrocarbon Oxidation in the Exhaust Port and Runner of a Spark-Ignited Engine

The effect of engine operating parameters (speed, spark timing, and fuel-air equivalence ratio [Φ]) on hydrocarbon (HC) oxidation within the cylinder and exhaust system is examined using propane or isooctane fuel. Quench gas (CO2) is introduced at two locations in the exhaust system (exhaust valve or port exit) to stop the oxidation process. Increasing the speed from 1500 to 2500 RPM at MBT spark timing decreases the total, cylinder-exit HC emissions by ∼50% while oxidation in the exhaust system remains at 40% for both fuels. For propane fuel at 1500 rpm, increasing Φ from 0.9 (fuel lean) to 1.1 (fuel rich) reduces oxidation in the exhaust system from 42% to 26%; at 2500 RPM, exhaust system oxidation decreases from 40% to approximately 0% for Φ = 0.9 and 1.1, respectively. Retarded spark increases oxidation in the cylinder and exhaust system for both fuels. Decreases in total HC emissions are accompanied by increased olefinic content and atmospheric reactivity.
Technical Paper

A Model of Quench Layer Entrainment During Blowdown and Exhaust of the Cylinder of an Internal Combustion Engine

An aerodynamic model of the entrainment of the head wall quench layer during blowdown and exhaust of an internal combustion engine has been developed. The model may be used to calculate the time resolved concentration and mass flowrate of hydrocarbons (HC) in the exhaust, from a knowledge of engine geometry and operating conditions. It predicts that the area As from which HC are swept will be proportional to the cube root of the ratio of the quench layer thickness δq to the thickness of the viscous boundary layer δv. Since the mass of HC emitted is proportional to the product of the HC density ρHC, the area As and the thickness δq, the HC emissions will be proportional to the product ρHC δq4/3 and this is the most important factor determining the emissions.
Technical Paper

A Modeling Investigation into the Optimal Intake and Exhaust Valve Event Duration and Timing for a Homogenous Charge Compression Ignition Engine

Homogenous Charge Compression Ignition (HCCI) engine operation has been demonstrated using both residual trapping and residual re-induction. A number of production valve train technologies can accomplish either of these HCCI modes of operation. Wide-scale testing of the many valve timing and duration options for an HCCI engine is both time and cost prohibitive, thus a modeling study was pursued to investigate optimal HCCI valve-train designs using the geometry of a conventional gasoline Port-Fuel-Injected (PFI) Spark-Ignition (SI) engine. A commercially available engine simulation program (WAVE), as well as chemical kinetic combustion modeling tools were used to predict the best approaches to achieving combustion across a wide variety of valve event durations and timings. The results of this study are consistent with experimental results reported in the literature: both residual trapping and residual re-induction are possible strategies for HCCI combustion.
Technical Paper

Contribution of Liquid Fuel to Hydrocarbon Emissions in Spark Ignition Engines

The purpose of this work was to develop an understanding of how liquid fuel transported into the cylinder of a port-fuel-injected gasoline-fueled SI engine contributes to hydrocarbon (HC) emissions. To simulate the liquid fuel flow from the valve seat region into the cylinder, a specially designed fuel probe was developed and used to inject controlled amounts of liquid fuel onto the port wall close to the valve seat. By operating the engine on pre-vaporized Indolene, and injecting a small amount of liquid fuel close to the valve seat while the intake valve was open, we examined the effects of liquid fuel entering the cylinder at different circumferential locations around the valve seat. Similar experiments were also carried out with closed valve injection of liquid fuel at the valve seat to assess the effects of residual blowback, and of evaporation from the intake valve and port surfaces.
Technical Paper

Pressure Ratio Influence on Exhaust Valve Flow Coefficients

In one dimensional engine simulation software, flow losses over complex geometries such as valves and ports are described using flow coefficients. It is generally assumed that the pressure ratio over the valve has a negligible influence on the flow coefficient. However during the exhaust valve opening the pressure difference between cylinder and port is large which questions the accuracy of this assumption. In this work the influence of pressure ratio on the exhaust valve flow coefficient has been investigated experimentally in a steady-flow test bench. Two cylinder heads, designated A and B, from a Heavy-Duty engine with different valve shapes and valve seat angles have been investigated. The tests were performed with both exhaust valves open and with only one of the two exhaust valves open. The pressure ratio over the exhaust port was varied from 1.1:1 to 5:1. For case A1 with a single exhaust valve open, the flow coefficient decreased significantly with pressure ratio.
Journal Article

Reduction of Cold-Start Emissions through Valve Timing in a GDI Engine

This work examines the effect of valve timing during cold crank-start and cold fast-idle (1200 rpm, 2 bar NIMEP) on the emissions of hydrocarbons (HC) and particulate mass and number (PM/PN). Four different cam-phaser configurations are studied in detail: 1. Baseline stock valve timing. 2. Late intake opening/closing. 3. Early exhaust opening/closing. 4. Late intake phasing combined with early exhaust phasing. Delaying the intake valve opening improves the mixture formation process and results in more than 25% reduction of the HC and of the PM/PN emissions during cold crank-start. Early exhaust valve phasing results in a deterioration of the HC and PM/PN emissions performance during cold crank-start. Nevertheless, early exhaust valve phasing slightly improves the HC emissions and substantially reduces the particulate emissions at cold fast-idle.
Journal Article

Potential of Negative Valve Overlap for Part-Load Efficiency Improvement in Gasoline Engines

This article reports on the potential of negative valve overlap (NVO) for improving the net indicated thermal efficiency (η NIMEP) of gasoline engines during part load. Three fixed fuel flow rates, resulting in indicated mean effective pressures of up to 6 bar, were investigated. At low load, NVO significantly reduces the pumping loses during the gas exchange loop, achieving up to 7% improvement in indicated efficiency compared to the baseline. Similar efficiency improvements are achieved by positive valve overlap (PVO), with the disadvantage of worse combustion stability from a higher residual gas fraction (xr). As the load increases, achieving the wide-open throttle limit, the benefits of NVO for reducing the pumping losses diminish, while the blowdown losses from early exhaust valve opening (EVO) increase.
Technical Paper

Dynamic Exhaust Valve Flow 1-D Modelling During Blowdown Conditions

To conduct system level studies on internal combustion engines reduced order models are required in order to keep the computational load below reasonable limits. By its nature a reduced order model is a simplification of reality and may introduce modeling errors. However what is of interest is the size of the error and if it is possible to reduce the error by some method. A popular system level study is gas exchange and in this paper the focus is on the exhaust valve. Generally the valve is modeled as an ideal nozzle where the flow losses are captured by reducing the flow area. As the valve moves slowly compared to the flow the process is assumed to be quasi-steady, i.e. interpolation between steady-flow measurements can be used to describe the dynamic process during valve opening. These measurements are generally done at low pressure drops, as the influence of pressure ratio is assumed to be negligible.