Refine Your Search


Search Results

Viewing 1 to 11 of 11
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Technical Paper

Knock Sensor Based Virtual Combustion Sensor Signal Bias Sensitivity

The combustion in a direct injected internal combustion engine is normally open-loop controlled. The introduction of cylinder pressure sensors enables a virtual combustion sensor which in turn enables closed-loop combustion control, and the possibility to counteract effects such as engine part-to-part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents an investigation of the robustness and the limitation of a knock sensor based virtual combustion sensor. This virtual combustion sensor utilize the common heat release analysis using a knock sensor based virtual cylinder pressure signal. Major virtual sensor error sources in a heavy-duty engine were identified as: the specific heat ratio model, the boost pressure and the crank angle phasing. The virtual sensor errors were quantified in relation to both the measured cylinder pressure and the total virtual sensor error.
Technical Paper

Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine

Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range.
Technical Paper

Air-Fuel Ratio Measurement Diagnostics During Cranking and Startup in a Port-Fuel-Injected Spark-Ignition Engine

Cranking and startup fuel control has become increasingly important due to ever tightening emission requirements. Additionally, engine-off strategies during idle will require substantially more engine startup events with the associated need for very clean starts. Thus, knowledge of an engine's Air-Fuel Ratio (AFR) during its early cycles is necessary in order to optimize cranking and startup fueling. This paper examines and compares two methods of measuring an engine's AFR during engine startup (approximately the first second of operation); an in-cylinder technique using a Fast Flame Ionization Detector (FFID) and the conventional exhaust based Universal Exhaust Gas Oxygen (UEGO) sensor method. Engine starts using a Ford Zetec engine were performed at three different temperatures (0, 20 and 90 C) as well as different initial engine starting positions.
Technical Paper

Optical Flow Sensor Using Geometric Moiré Interferometry

We report on a feasibility study of an optical micro-electro-mechanical systems (MEMS) flow sensor to measure flow rate using Moiré fringe displacement of a floating element. Due to constraints on weight, power, and size for space environmental systems, the development of sensor components that minimize the equivalent systems mass (ESM) while maintaining or exceeding required specifications is highly desirable. A feature of the optical detection method is a physical separation of electrical components from the flow stream. The geometric Moiré fringe shift optically amplifies small displacements by the ratio of the fringe pitch to the movable grating pitch that is detected using an external CCD imager, providing an electrically isolated, robust, direct scheme for detecting flow from shear stress induced displacement.
Journal Article

Optimal Pressure Based Detection of Compressor Instabilities Using the Hurst Exponent

The compressor surge line of automotive turbochargers can limit the low-end torque of an engine. In order to determine how close the compressor operates to its surge limit, the Hurst exponent of the pressure signal has recently been proposed as a criterion. The Hurst exponent quantifies the fractal properties of a time series and its long-term memory. This paper evaluates the outcome of applying Hurst exponent based criterion on time-resolved pressure signals, measured simultaneously at different locations in the compression system. Experiments were performed using a truck-sized turbocharger on a cold gas stand at the University of Cincinnati. The pressure sensors were flush-mounted at different circumferential positions at the inlet of the compressor, in the diffuser and volute, as well as downstream of the compressor.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Knock Sensor Based Virtual Cylinder Pressure Sensor

Typically the combustion in a direct injected compression ignited internal combustion engine is open-loop controlled. The introduction of a cylinder pressure sensor opens up the possibility of a virtual combustion sensor which could enable closed-loop combustion control and thus the potential to counteract effects such as engine part to part variation, component ageing and fuel quality diversity. Closed-loop combustion control requires precise, robust and preferably cheap sensors. This paper presents a virtual cylinder pressure sensor based on the signal from the inexpensive but well proven knock sensor. The method used to convert the knock sensor signal into a pressure estimate included the stages: Phase correcting the raw signal, Filtering the raw signal, Scaling the signal to known thermodynamic laws and provided engine sensors signals and Reconstructing parts of the signal with other known models and assumptions.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
Technical Paper

Optimization-Based Robust Architecture Design for Autonomous Driving System

With the recent advancement in sensing and controller technologies architecture design of an autonomous driving system becomes an important issue. Researchers have been developing different sensors and data processing technologies to solve the issues associated with fast processing, diverse weather, reliability, long distance recognition performance, etc. Necessary considerations of diverse traffic situations and safety factors of autonomous driving have also increased the complexity of embedded software as well as architecture of autonomous driving. In these circumstances, there are almost countless numbers of possible architecture designs. However, these design considerations have significant impacts on cost, controllability, and system reliability. Thus, it is crucial for the designers to make a challenging and critical design decision under several uncertainties during the conceptual design phase.