Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Whistling Potential for Duct Components

2013-05-13
2013-01-1889
Components in ducts systems that create flow separation can for certain conditions and frequencies amplify incident sound waves. This vortex-sound phenomena is the origin for whistling, i.e., the production of tonal sound at frequencies close to the resonances of a duct system. One way of predicting whistling potential is to compute the acoustic power balance, i.e., the difference between incident and scattered sound power. This can readily be obtained if the scattering matrix is known for the object. For the low frequency plane wave case this implies knowledge of the two-port data, which can be obtained by numerical and experimental methods. In this paper the procedure to experimentally determine whistling potential will be presented and some examples are given to show how this procedure can be used in some applications for automotive intake and exhaust system components.
Technical Paper

Acoustic Simulation of Medium Speed IC-Engine Exhaust Gas After Treatment Devices with Substrate

2014-06-30
2014-01-2057
The after treatment devices (ATD) used in internal combustion engine (IC-engine) exhaust systems are mainly designed with emphasis on emission control, i.e. chemical efficiency, while paying less attention to the acoustic performance. In automotive applications, the duct diameters are so small that studying the acoustic wave propagation only in the plane wave frequency range is usually sufficient. In the case of medium speed IC-engines, used for example in power plants and ships, the three dimensional acoustic phenomena must also be taken into account. The main elements of the medium speed IC-engine ATD are the selective catalytic reducer (SCR) and oxidation catalyst (OC), which are based on a large amount of coated channels, i.e. the substrates. The number and type of the substrates depends not only on the regional environment legislations but also on the engine type.
Technical Paper

The Anatomy of Knock

2016-04-05
2016-01-0704
The combustion process after auto-ignition is investigated. Depending on the non-uniformity of the end gas, auto-ignition could initiate a flame, produce pressure waves that excite the engine structure (acoustic knock), or result in detonation (normal or developing). For the “acoustic knock” mode, a knock intensity (KI) is defined as the pressure oscillation amplitude. The KI values over different cycles under a fixed operating condition are observed to have a log-normal distribution. When the operating condition is changed (over different values of λ, EGR, and spark timing), the mean (μ) of log (KI/GIMEP) decreases linearly with the correlation-based ignition delay calculated using the knock-point end gas condition of the mean cycle. The standard deviation σ of log(KI/GIMEP) is approximately a constant, at 0.63. The values of μ and σ thus allow a statistical description of knock from the deterministic calculation of the ignition delay using the mean cycle properties
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

Balancing Design Functional Coupling and Sensitivity to Noise to Achieve the Design Target

2007-04-16
2007-01-1207
The primary objective in design is to achieve the target value of the design's response function. If a design fails to achieve the target value, it most likely fails in two ways: inconsistent functional output and in design involving multiple response functions, unable to converge to the multiple target values in spite of iterative adjustment of the design parameters. The former is symptom of a design not able to perform in the presence of variability, i.e., noise. The latter is symptom of a design that fails to perform in the presence of functional coupling. Both problems are best addressed at the conceptual stage of the design at which only design solution that is inherently robust to noise and functionally uncoupled is entertained. If this is not possible, the alternative is to exploit the interaction between control variables and variables that are sources of noise and functional coupling to render the design insensitive to them.
Technical Paper

Vibration Measurement in Flight

1937-01-01
370175
EQUIPMENT for measuring vibration in airplane structures and powerplants during actual flight is described in this paper. This development is the result of a cooperative research program carried out by the Bureau of Aeronautics of the U. S. Navy and the Massachusetts Institute of Technology with contributions of improvements in design and new features by the Sperry Gyroscope Co., Inc. In its essentials, the M.I.T.-Sperry Apparatus consists of a number of electrical pickup units which operate a central amplifying and recording unit. The recorder is a double-element photographic oscillograph. Each pickup is adapted especially to the type of vibration that it is intended to measure and is made so small that it does not appreciably affect the vibration characteristics of the member to which it is attached rigidly. By using a number of systematically placed pickups, all the necessary vibration information on an airplane can be recorded during a few short flights.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Technical Paper

Experimental Analysis on the ‘Exact’ Cremer Impedance in Rectangular Ducts

2018-06-13
2018-01-1523
Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester’s work is that it simplified the analysis on the effect of flow by only considering high frequencies or the ‘well cut-on’ modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest, with the vehicle intake and exhaust system included. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the ‘exact’ solution of Cremer impedance for circular waveguides, which reveals an appreciable difference between the exact and classic solution in the low frequency range. Consequently, the exact solution can lead to a much higher low-frequency attenuation level.
Technical Paper

Flow Noise Generation in a Pipe Bend

2018-06-13
2018-01-1525
Noise generated by low Mach number flow in duct networks is important in many industrial applications. In the automotive industry the two most important are the ventilation duct network and the engine exhaust system. Traditionally, design is made based on rule-of thumb or slightly better by simple semi-empirical scaling laws for flow noise. In many cases, strong curvatures and local deviations from circular cross-sections are created due to outer geometry restrictions. This can result in local relatively high flow velocities and complex flow separation patterns and as a result, rule-of thumb and scaling law methods can become highly inaccurate and uncertain. More advanced techniques based on time domain modelling of the fluid dynamics equations together with acoustic analogies can offer a better understanding of the local noise generation, the propagation and interaction with the rest of the system.
Journal Article

Systematic Optimization of an Exhaust System to Meet Noise Radiation Criteria at Idle

2014-04-01
2014-01-0006
Exhaust noise is a major contributor to the radiated noise level of a vehicle, especially at idle. The radiated noise level has to meet a certain criteria based on regulation and consumer demand. In many cases, the problem appears after the vehicle is manufactured and the tailpipe noise measurement is performed indicating a high noise level that needs to be reduced. This paper describes one of those cases where the radiated noise level of a certain passenger car at idle was required to be reduced by 6 dB(A). The exhaust system consists of one main muffler and one auxiliary muffler. A 1D two-port model of the exhaust system including the two mufflers was built using commercial software. This model was validated against the measurement of the two-port matrix of both mufflers. The model was then used together with tailpipe noise measurements to estimate the characteristics of the source strength and impedance.
Journal Article

IC-Engine Exhaust and Intake System Acoustic Source Characterization

2014-06-30
2014-01-2061
The paper gives an overview of techniques used for characterization of IC-engines as acoustic sources of exhaust and intake system noise. Some recent advances regarding nonlinear source models are introduced and discussed. To calculate insertion loss of mufflers or the level of radiated sound information about the engine as an acoustic source is needed. The source model used in the low frequency plane wave range is often the linear time invariant one-port model. The acoustic source data is obtained from experimental tests or from 1-D CFD codes describing the engine gas exchange process. The IC-engine is a high level acoustic source and in most cases not completely linear. It is therefore of interest to have models taking weak non-linearity into account while still maintaining a simple method for interfacing the source model with a linear frequency domain model for the attached exhaust or intake system.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Technical Paper

A Novel Design for Cruiser Type Motorcycle Silencer Based on Micro-Perforated Elements

2012-10-23
2012-32-0109
Regulations stipulating the design of motorcycle silencers are strict, especially when the unit incorporates fibrous absorbing materials. Therefore, innovative designs substituting such materials while still preserving acceptable level of characteristic sound are currently of interest. Micro perforated elements are innovative acoustic solutions, which silencing effect is based on the dissipation of the acoustic wave energy in a pattern of sub-millimeter apertures. Similarly to fibrous materials the micro-perforated materials have been proved to provide effective sound absorption in a wide frequency range. Additionally, the silencer is designed as a two-stage system that provides an optimal solution for a variety of exploitation conditions. In this paper a novel design for a cruiser type motorcycle silencer, based on micro-perforated elements, is presented.
X