Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Systematic Optimization of an Exhaust System to Meet Noise Radiation Criteria at Idle

2014-04-01
2014-01-0006
Exhaust noise is a major contributor to the radiated noise level of a vehicle, especially at idle. The radiated noise level has to meet a certain criteria based on regulation and consumer demand. In many cases, the problem appears after the vehicle is manufactured and the tailpipe noise measurement is performed indicating a high noise level that needs to be reduced. This paper describes one of those cases where the radiated noise level of a certain passenger car at idle was required to be reduced by 6 dB(A). The exhaust system consists of one main muffler and one auxiliary muffler. A 1D two-port model of the exhaust system including the two mufflers was built using commercial software. This model was validated against the measurement of the two-port matrix of both mufflers. The model was then used together with tailpipe noise measurements to estimate the characteristics of the source strength and impedance.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Technical Paper

Inclusion of Upstream Turbulent Inflow Statistics to Numerically Acquire Proper Fan Noise Characteristics

2016-06-15
2016-01-1811
To obtain realistic noise characteristics from CAA studies of subsonic fans, it is important to prescribe properly constructed turbulent inflow statistics. This is frequently omitted; instead it is assumed that the stochastic characteristics of turbulence, absent at the initial stage, progressively develops as the rotor inflicts the flow field over time and hence that the sound generating mechanism governed by surface pressure fluctuations are asymptotically accounted for. That assumption violates the actual interplay taking place between an ingested flow field and the surface pressure fluctuations exerted by the blades producing noise. The aim of the present study is to examine the coupling effect between synthetically ingested turbulence to sound produced from a subsonic ducted fan. The steady state inflow parameters are mapped from a precursor RANS simulation onto the inflow boundaries of a reduced domain to limit the computational cost.
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Whistling Potential for Duct Components

2013-05-13
2013-01-1889
Components in ducts systems that create flow separation can for certain conditions and frequencies amplify incident sound waves. This vortex-sound phenomena is the origin for whistling, i.e., the production of tonal sound at frequencies close to the resonances of a duct system. One way of predicting whistling potential is to compute the acoustic power balance, i.e., the difference between incident and scattered sound power. This can readily be obtained if the scattering matrix is known for the object. For the low frequency plane wave case this implies knowledge of the two-port data, which can be obtained by numerical and experimental methods. In this paper the procedure to experimentally determine whistling potential will be presented and some examples are given to show how this procedure can be used in some applications for automotive intake and exhaust system components.
Technical Paper

Experimental Analysis on the ‘Exact’ Cremer Impedance in Rectangular Ducts

2018-06-13
2018-01-1523
Cremer impedance, first proposed by Cremer (Acustica 3, 1953) and then improved by Tester (JSV 28, 1973), refers to the locally reacting boundary condition that can maximize the attenuation of a certain acoustic mode in a uniform waveguide. One limitation in Tester’s work is that it simplified the analysis on the effect of flow by only considering high frequencies or the ‘well cut-on’ modes. This approximation is reasonable for large duct applications, e.g., aero-engines, but not for many other cases of interest, with the vehicle intake and exhaust system included. A recent modification done by Kabral et al. (Acta Acustica united with Acustica 102, 2016) has removed this limitation and investigated the ‘exact’ solution of Cremer impedance for circular waveguides, which reveals an appreciable difference between the exact and classic solution in the low frequency range. Consequently, the exact solution can lead to a much higher low-frequency attenuation level.
Technical Paper

Flow Noise Generation in a Pipe Bend

2018-06-13
2018-01-1525
Noise generated by low Mach number flow in duct networks is important in many industrial applications. In the automotive industry the two most important are the ventilation duct network and the engine exhaust system. Traditionally, design is made based on rule-of thumb or slightly better by simple semi-empirical scaling laws for flow noise. In many cases, strong curvatures and local deviations from circular cross-sections are created due to outer geometry restrictions. This can result in local relatively high flow velocities and complex flow separation patterns and as a result, rule-of thumb and scaling law methods can become highly inaccurate and uncertain. More advanced techniques based on time domain modelling of the fluid dynamics equations together with acoustic analogies can offer a better understanding of the local noise generation, the propagation and interaction with the rest of the system.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Technical Paper

Acoustic Simulation of Medium Speed IC-Engine Exhaust Gas After Treatment Devices with Substrate

2014-06-30
2014-01-2057
The after treatment devices (ATD) used in internal combustion engine (IC-engine) exhaust systems are mainly designed with emphasis on emission control, i.e. chemical efficiency, while paying less attention to the acoustic performance. In automotive applications, the duct diameters are so small that studying the acoustic wave propagation only in the plane wave frequency range is usually sufficient. In the case of medium speed IC-engines, used for example in power plants and ships, the three dimensional acoustic phenomena must also be taken into account. The main elements of the medium speed IC-engine ATD are the selective catalytic reducer (SCR) and oxidation catalyst (OC), which are based on a large amount of coated channels, i.e. the substrates. The number and type of the substrates depends not only on the regional environment legislations but also on the engine type.
Technical Paper

Designing Thermoacoustic Engines for Automotive Exhaust Waste Heat Recovery

2021-04-06
2021-01-0209
Thermoacoustic engine has been proven to be a promising technology for automotive exhaust waste heat recovery to save fossil fuel and reduce emission thanks to its ability to convert heat into acoustic energy which, hence, can be harvested in useful electrical energy. In this paper, based on the practical thermodynamic parameters of the automotive exhaust gas, including mass flow rate and temperature, two traveling-wave thermoacoustic engines are designed and optimized for the typical heavy-duty and light-duty vehicles, respectively, to extract and reutilize their exhaust waste heat. Firstly, nonlinear thermoacoustic models for each component of a thermoacoustic engine are established in the frequency domain, by which any potential steady operating point of the engine is available.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
Journal Article

Study of Installation Effects on Automotive Cooling Fan Noise

2022-06-15
2022-01-0935
Vehicle electrification is one of the biggest trends in the automotive industry. Without the presence of combustion engine, which is the main noise source on conventional vehicles, noise from other components becomes more perceivable; among these components, the cooling fan is one of the major noise sources, especially during battery charging. The design of cooling fan modules is usually carried out in the early stage before building prototype vehicles. Therefore, understanding the installation effects of the cooling fan on the radiated sound is essential to secure good customer satisfaction. In this study, three different measurement setups of cooling fans are carried out: free field, wall mounted, and in-vehicle measurement. Four cooling fan prototypes with different fan blade designs are used in each measurement. Correlations of these measurements are investigated through comparisons of the measurement results.
Technical Paper

HVAC Blower: a Steady State RANS Noise Prediction Method

2024-06-12
2024-01-2937
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces.
X