Refine Your Search

Topic

Author

Search Results

Technical Paper

Computational design of commercial vehicle for reconciling aerodynamics and engine cooling performance

2000-06-12
2000-05-0344
As the global environmental protection becomes the world consensus recently, the regulations of the fuel consumption and the exhaust gas have large effects on the performance and the fundamental structure of commercial vehicles. Especially the technology concerning "fluid" and "heat" has a close relationship with those issues. Owing to above circumstances, commercial vehicles such as large trucks and buses are forced to be designed near the limit of allowance. Furthermore, a rapid design is another requirement. However, though significant number of variations, i.e., cab configuration, wheel base, rear body configuration, engine specification, etc., are prepared, it is impossible to improve the performance of all those combinations by experiments which cost a lot. Accordingly, the quantitative prediction using computer will become indispensable at the beginning term of new car development.
Technical Paper

A vibration evaluation model on the wheelchair transporting apparatus

2000-06-12
2000-05-0350
Vehicles modified with a wheelchair transporting apparatus are generally used for improving wheelchair users'' mobility. However, in designing the apparatus, consideration for passengers'' discomfort and fatigue is not sufficient. As a countermeasure of this problem, both vibration characteristics of the passenger-wheelchair system and passengers'' sensitivity need to be studied. In previous study, authors constructed a vibration simulation model to predict vibration on passengers'' body from floor vibration. This study aims to clarify the relationship between vibration and comfort, and to propose a method to support designing WTA by the findings of this study. First, we carried out a vibration experiment with a vibration generator that vibrated the passenger-wheelchair system and measured floor vibration, vibration on the human body, and subjective evaluation. Second, we discussed experimental results.
Technical Paper

Booming noise analysis of passenger car using integrated approach of CAT/CAE

2000-06-12
2000-05-0293
The need of lightweight vehicle design is motivated by the recent global trend of less fuel consumption and lower emission in vehicle. However in NVH development of vehicle, it becomes more difficult for the lightweight vehicle to reach low vibro-acoustic sensitivity than, for the heavy weight one to do so. Inthis environment, this paper describes about the practical finite element (FE) modeling of vehicle structure and acoustics, in order to predict "boom" response to powertrain excitation. The FE modeling process through validation and updating with experimental mode makes, the accumulation of considerable expertise for improving prediction accuracy, possible. FE analysis based on this modeling process is so useful for predicting "boom" levels up to 200 Hz. Using the result of FE analysis, structural optimization is executed in order to improve "boom" level of 80 Hz.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

2001-03-05
2001-01-0545
The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

Mixing Control and Combustion in Gasoline Direct Injection Engines for Reducing Cold-Start Emissions

2001-03-05
2001-01-0550
A two-stage combustion is one of the Mitsubishi GDI™ technologies for a quick catalyst warm-up on a cold-start. However, when the combustion is continued for a long time, an increase in the fuel consumption is a considerable problem. To solve the problem, a stratified slight-lean combustion is newly introduced for utilization of catalysis. The stratified mixture with slightly lean overall air-fuel ratio is prepared by the late stage injection during the compression stroke. By optimizing an interval between the injection and the spark timing, the combustion simultaneously supplies substantial CO and surplus O2 to a catalyst while avoiding the soot generation and the fouling of a spark plug. The CO oxidation on the catalyst is utilized to reduce the cold-start emissions. Immediately after the cold-start, the catalyst is preheated for the minimum time to start the CO oxidation by using the two-stage combustion. Following that, the stratified slight-lean combustion is performed.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
Technical Paper

Innovative injection rate control with next-generation, common-rail fuel injection system

2000-06-12
2000-05-0061
Injection rate control is an important capability of the ideal injection system of the future. However, in a conventional Common-Rail System (CRS) the injection pressure is constant throughout the injection period, resulting in a nearly rectangular injection rate shape and offering no control of the injection rate. Thus, in order to realize injection rate control with a CRS, a "Next- generation Common-Rail System (NCRS)" was conceptualized, designed, and fabricated. The NCRS has two common rails, for low- and high-pressure fuel, and switches the fuel pressure supplied to the injector from the low- to the high- pressure rail during the injection period, resulting in control over the injection rate shape. The effects of injection rate shape on exhaust emissions and fuel consumption were investigated by applying this NCRS to a single- cylinder research engine.
Technical Paper

Measurement of Total Hemispherical Emittance at Cryogenic Temperatures

1996-07-01
961430
A method for measurement of total hemispherical emittance of metals at cryogenic temperatures is described. The principle of the measurement is based on calorimetric method and total hemispherical emittance as a function of temperature is obtained by measuring the equilibrium temperature of a specimen corresponding to different heat input, which is given to a heater attached to the specimen. Measurements of total hemispherical emittance and specific heat have been carried out on the specimen of lead over a temperature range of 10∼40 K. In order to verify the measurement method, uncertainty on heat loss is discussed.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

The Aerodynamic Development of a Small Specialty Car

1994-03-01
940325
Aerodynamic drag reduction is one of the most important aspects of enhancing overall vehicle performance. Many car manufacturers have been working to establish drag reduction techniques. This paper describes the development process of a new small speciality car which achieved coefficient of drag(CD) of 0.25. A description of the test facilities and the systems used for developing the aerodynamic aspect of the car are also introduced briefly.
Technical Paper

A Study on the Effects of the Active Yaw Moment Control

1995-02-01
950303
This paper presents a new torque distribution system-“Right/Left Torque Control System”, aimed at improving a vehicle's cornering properties by using yaw moment control. The torque transfer mechanisms of this system have been analyzed. Also, a yaw moment control algorithm using yaw rate feedback control has been designed. Next, vehicle cornering properties were evaluated using numerical simulation developed from data taken from an actual vehicle. As a result, improvements were achieved in the maneuverability and stability of a vehicle during cornering.
Technical Paper

A Method of Predicting Dent Resistance of Automobile Body Panels

1995-02-01
950574
Optimizing the design of automobile outer panels for weight reductions requires a consideration of stiffness and dent resistance. This paper presents a finite element analysis method for predicting the dent resistance of automobile body panels. The method is based on elastoplasticity analysis and nonlinear contact analysis. The analysis shows that dent resistance is greatly influenced not only by the stress-strain curve of the formed panel but also by the residual stress in the panel. An increase in yield stress improves dent resistance. The computed results obtained with this method compare favorably with experimental data, thereby validating this approach.
Technical Paper

A Study of the Durability of Diesel Oxidation Catalysts

1995-11-01
952650
Diesel emission control is being addressed worldwide to help preserve the global environment. In 1994, emission controls in the U.S. called for reduction of diesel particulate matter (PM) to 10 to 20% of 1986's initial limit. In the same year, we developed and marketed small and medium duty trucks which were equipped with PM reduction systems that oxidize soluble organic fraction (SOF) contained in the PM, in order to satisfy these new regulations. Prior to their marketing, a catalyst was selected from among several types of candidate catalysts. Durability tests were performed using a catalytic converter-equipped small duty truck to verify the durability of the chosen catalyst. The durability test course was set up combining urban areas and expressways in the southern part of California, U.S.A.. The cumulative total distance covered on the test course reached 200,000 km. During the durability test, the catalyst was evaluated by measurement of PM emission using a chassis dynamometer.
Technical Paper

Analysis of Stiffness of Truck Door Panel Effective Arrangement of Stiffeners for Improving Stiffness

1995-11-01
952678
Since it is more difficult for truck door panels to realize curvature than passenger car door panels, internal stiffeners are mounted between the outer panel and inner panel through the use of an adhesive for ensuring stiffness. For this reason, a problem occurs as to the proper placement of the stiffeners so as to effectively improve stiffness. By FEM prediction and experimentation, the following have been clarified: (1) Arrangement of stiffeners for effectively improving stiffness (2) Stiffness share of stiffeners and outer panel against stiffness
Technical Paper

Relationship Between MTBE-Blended Gasoline Properties and Warm-Up Driveability

1995-10-01
952519
The relationship between MTBE-blended gasoline properties and warm-up driveability is investigated by focusing on the transient combustion air-fuel ratio that strongly relates to the combustion state of the engine. As a result, although warm-up driveability of MTBE-free gasoline has a high correlation with 50% distillation temperature (T50) and a high correlation with 100°C distillation volume (E100), the correlation is found to be low when blended with MTBE. Various formulas that improve correlation with peak excess air ratio (λ) by correcting T50 and E100 for the amount of MTBE blended are examined. The formula for which the highest determination coefficient is obtained is proposed as a new driveability index (DI) that can also be applied to MTBE-blended gasoline. In addition, the effect on driveability by gasoline base materials using this new DI also is investigated.
Technical Paper

Optimization of In-Cylinder Flow and Mixing for a Center-Spark Four-Valve Engine Employing the Concept of Barrel-Stratification

1994-03-01
940986
Flow and flame structure visualization and modeling were performed to clarify the characteristics of bulk flow, turbulence and mixing in a four-valve engine to adopt the lean combustion concept named “Barrel-Stratification” to the larger displacement center-spark four-valve engine. It was found that the partitions provided in the intake port and the tumble-control piston with a curved-top configuration were effective to enhance the lean combustion of such an engine. By these methods, the fuel distribution in the intake port and the in-cylinder bulk flow structure are optimized, so that the relatively rich mixture zone is arranged around the spark plug. The tumble-control piston also contributes to optimize the flow field structure after the distortion of tumble and to enable stable lean combustion.
Technical Paper

Combustion Control Technologies for Direct Injection SI Engine

1996-02-01
960600
Novel combustion control technologies for the direct injection SI engine have been developed. By adopting up-right straight intake ports to generate air tumble, an electro-magnetic swirl injector to realize optimized spray dispersion and atomization and a compact piston cavity to maintain charge stratification, it has become possible to achieve super-lean stratified combustion for higher thermal efficiency under partial loads as well as homogeneous combustion to realize higher performance at full loads. At partial loads, fuel is injected into the piston cavity during the later stage of the compression stroke. Any fuel spray impinging on the cavity wall is directed to the spark plug. Tumbling air flow in the cavity also assists the conservation of the rich mixture zone around the spark plug. Stable combustion can be realized under a air fuel ratio exceeding 40. At higher loads, fuel is injected during the early stage of the intake stroke.
Technical Paper

Reduction of Exhaust Emission with New Water Injection System in a Diesel Engine

1996-02-01
960033
In this study a new water injection system was applied to an 11 liter naturally aspirated DI diesel engine in order to reduce exhaust emissions. In this system, the water and fuel were arranged in the injection nozzle during the time between injections as fuel, water and then fuel. The fuel and water were then injected into the cylinder in that order. The tests were conducted at several engine operating conditions from the Japanese 13 mode test cycle to clarify effects of water injection on exhaust emissions and fuel consumption. The results showed that NOx reduction was directly proportional to the relative amount of water injection, regardless of engine speed and load. By using the optimal relative amount of water injection at each engine operating condition, total NOx and particulate matter (PM) in the Japanese 13 mode test cycle were reduced by 50% and 25%, respectively, without a fuel consumption penalty.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
X