Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Development of Noise Propensity Index (NPI) for Robust Brake Friction

2017-09-17
2017-01-2529
A semi-empirical index to evaluate the noise propensity of brake friction materials is introduced. The noise propensity index (NPI) is based on the ratio of surface and matrix stiffness of the friction material, fraction of high-pressure contact plateaus on the sliding surface, and standard deviation of the surface stiffness of the friction material that affect the amplitude and frequency of the stick-slip oscillation. The correlation between noise occurrence and NPI was examined using various brake linings for commercial vehicles. The results obtained from reduced-scale noise dynamometer and vehicle tests indicated that NPI is well correlated with noise propensity. The analysis of the stick-slip profiles also indicated that the surface property affects the amplitude of friction oscillation, while the mechanical property of the friction material influences the propagation of friction oscillation after the onset of vibration.
Journal Article

The Role of Copper on the Friction and Wear Performance of Automotive Brake Friction Materials

2011-09-18
2011-01-2367
Copper has been regarded as one of the indispensable ingredients in the brake friction materials since it provides high thermal diffusivity at the sliding interface. However, the recent regulations against environmentally hazardous ingredients limit the use of copper in the commercial friction material and much effort has been made for the alternatives. In this work, the role of the cuprous ingredients such as copper fiber, copper powder, cupric oxide (CuO), and copper sulfide (CuS) are studied using the friction materials based on commercial formulations. The investigation was performed using a full inertial brake dynamometer and 1/5 scale dynamometer for brake performance and wear test. Results showed that the cuprous ingredients played a crucial role in maintaining the stable friction film at the friction interface, resulting in improved friction stability and reduced aggressiveness against counter disk.
Technical Paper

Study on the Prediction of Performance and Emission in a 4 - cylinder 4 - stroke Cycle Turbocharged Gasoline Engine

1991-11-01
912471
A computer simulation program has been developed for predicting the performance and emission of a multi-cylinder turbocharged gasoline engine. The two-zone expansion model and the method of characteristics were adopted to evaluate the properties of the gas in the cylinder and pipe respectively. The flow through the turbine and compressor was calculated by using the characteristic charts. To predict exhaust emission, twelve species were considered to be present in combustion products, and the concentrations of these species were calculated through equilibrium thermodynamics and kinetic theory. The simulation models were selected not to depend much on the empirical constants. For the indispensable empirical constants, the easy ways of their determination were suggested.
Technical Paper

Theoretical and Experimental Flow Analysis of Exhaust Manifolds for PZEV

2007-08-05
2007-01-3444
As the current and future emission regulations become stringent, the research on exhaust manifold with CCC (Close Coupled Catalyst) has been the interesting and remarkable subject. To design of exhaust manifold with CCC is a difficult task due to the complexity of the flow distribution caused by the pulsating flows that are emitted at the exhaust ports. This study is concerned with the theoretical and experimental approach to improve catalyst flow uniformity through the basic understanding of exhaust flow characteristics. Computational and experimental approach to the flow for exhaust manifold of conventional cast type, stainless steel bending type with 900 cell CCC system in a 4-cylinder gasoline engine was performed to investigate the flow distribution of exhaust gases.
Technical Paper

Experimental Investigation on Flow Rate Performance and LPLi Engine Application of Turbine Pump with Various Composition Ratio of LPG Fuel

2007-08-05
2007-01-3629
This study has mainly focused on the development of turbine type LPLi pump. The flow rate of turbine pump was examined with various fuel blends of LPG. The experimental results of flow rate and fuel injection quantity of turbine type fuel pump have equivalent or better performance using summer season LPG fuel compared to BLDC one. However, the flow rate of turbine type pump decreased as the proportion of propane content in LPG fuel increased. The cause of flow drop was thought as the cavitations phenomena at high speed impeller component. Finally, the noisy characteristics and durability performance of turbine pump were tested. The hot start delay of LPLi engine was assessed with various composition ratio of LPG. The engine starting and pressure settling time of turbine pump showed equivalent performance to those of BLDC one.
Technical Paper

Effects of Gas Composition on the Performance and Hydrocarbon Emissions for CNG Engines

1998-08-11
981918
Natural gas is considered to be an alternative fuel for passenger cars, truck transportation and stationary engines that can provide both good environmental effect and energy security. However, as the composition of fuel natural gas varies with the location, climate and other factors, such changes in fuel properties affect emission characteristics and performance of CNG (Compressed Natural Gas) engines. The purpose of the present study is to investigate effects of difference in gas composition on engine performance and hydrocarbon emission characteristics. The results show that THC decreases with an increasing WI (Wobber Index) and MCP (Maximum Combustion Potential) of natural gas. The power is shown to be proportional to the total heat value of the actual amount of gas entering the cylinder. There is 20% power variation depending on the composition of gas when the A/F ratio and spark timing are adjusted and fixed for a specific gas.
Technical Paper

The Effect of Solid Lubricants on Friction Characteristics

1998-09-20
982235
Friction materials with three different formulations containing different solid lubricants were investigated to study the role of lubricants on the friction performance. The three friction materials contained 10 vol.% graphite, 7 vol.% graphite + 3 vol.% Sb2S3, and 7 vol.% graphite + 3 vol.% MoS2, respectively, with the same amount of other ingredients. Results of this work showed that each formulation had advantages and disadvantages. The friction materials containing two lubricants (graphite + MoS2 or Sb2S3) showed better resistance to fading and improved friction stability than the friction material containing only graphite. However, the friction materials with two lubricants showed disadvantages on anti-fading, wear resistance, and DTV generation.
Technical Paper

The OBD-II System in the Hyundai Accent

1998-10-19
982551
This paper presents a system concept of the On-Board Diagnostics system (OBD-II) in the Hyundai Accent. New-α and α-DOHC engine developed by Hyundai are installed in the Accent. The ECU (Engine Control Unit) developed by BOSCH is adopted for this vehicle. To comply with the OBD-II regulation mandated by CARB (California Air Resources Board), some monitoring algorithms originally developed by BOSCH were introduced and modified for the Hyundai Accent. Using modified algorithms, many kinds of test were carried out during more than four years. Through the demonstration test and various field tests, it was confirmed that the OBD-II system fulfilled the regulation and had good performance.
Technical Paper

Experimental Study on DeNOx Performance by Plasma-Catalyst (Ag, Au/Al2O3) System

2002-10-21
2002-01-2705
Plasma-catalyst (Ag, Au/Al2O3) systems were applied to NOx reduction in a model lean-burn engine exhaust gas. Also, DeNOx test of real diesel exhaust gas was performed by plasma-Ag/Al2O3 system. In the case of model exhaust gas, the catalytic activity for NOx reduction was enhanced by the assistance of plasma in the wide temperature range. The NOx conversion efficiency of plasma-Ag/Al2O3 was 40∼90% under the condition of C3 H6 3200ppm (C1/NOx = 5.96) and 10% O2 over the temperature range of 250∼400°C. The plasma-Au/Al2 O3 system showed remarkable low temperature NOx reduction activity at 100∼250°C. The real engine full flow test was performed for 70% of the full load and at engine speed of 1500rpm. NOx removal of 46% from the diesel exhaust gas was achieved by the plasma-Ag/Al2O3 catalyst system at 364°C(C1/NOx = 6). In the case of higher C1/NOx = 10, the NOx conversion increased up to 73% at 381°C. Also, DeNOx engine tests were performed for full load of 1500, 2000 and 2500rpm.
Technical Paper

Fuel Effect on Particle Emissions of a Direct Injection Engine

2013-04-08
2013-01-1559
PN emissions were measured using a 2012 1.6L gasoline direct injection (GDI) engine vehicle. The measurements were performed over NEDC using domestic fuel from South Korea and Euro 5 certification fuel, also FTP-75 cycle using domestic fuel and Indolene (official emission test fuel in the US). Domestic fuel is the most volatile and has the least aromatics, Euro 5 certification fuel is the least volatile and has the most aromatics. Lower volatile gasoline generates more particle emissions due to diffusion combustion of fuel attached on the piston and fuel residues which are burned in its liquid form. Gasoline with more aromatic contents generates more particle emissions, too. Because aromatics have higher boiling point, lower vapor pressure and ring structures. Fuel specification difference resulted in PN emission difference. In NEDC tests, result using Euro 5 certification fuel was 77.0% higher than the result using domestic fuel.
Technical Paper

Strategies for Particle Emissions Reduction from GDI Engines

2013-04-08
2013-01-1556
In this study, present level of 2.0L GDI vehicle is measured and it is figured out how to reduce particle emissions against European emission limit(EURO 6) and US emissions standards(LEV 3) through engine test and vehicle test. A cause of PM and PN formation is divided into several reasons. This paper describes the optimization of engine control parameter and hardware change like injector type and injection target position like spray pattern optimization with minimizing side effect. If particle emission limit is getting more strengthen GPF(Gasoline Particle Filter) is a simple solution to meet particle emission limit. But engine performance decreases according to exhaust pressure increase and there is cost problem. This paper have shown that 60% level of euro6c PN limit is accomplished without a GPF at demonstrated vehicle.
Technical Paper

A Numerical Investigation of Mixing Characteristics of a Direct-Injection (DI) Engine with Liquefied Petroleum Gas

2013-03-25
2013-01-0136
Mixing characteristics of a Direct-Injection engine with liquefied petroleum gas were numerically investigated using a 3D unsteady Eularian-Lagrangian two-phase model. Numerical results were validated to the experimental data of heat release rate, pressure and mass flow rate of air. The numerical results and experimental data were in a good agreement. Simulations were conducted with various engine operation conditions to investigate the effects of supercharging on the mixing characteristics of the DI engine with LPG. The results showed that the fuel uniformities and evaporation rates of LPG are higher than them of gasoline. Fuel consumption rates and maximum cylinder temperatures of LPG were also higher than them of gasoline.
Technical Paper

A Study Regarding Comparisons of Driver Performance According to Touch Display Locations (X, Y, Z axes)

2013-03-25
2013-01-0002
There have been many current studies regarding touch display locations. However, these studies revolve specifically around the Y and Z axes which disregard certain elements of an touch display in terms of usability factors. The compact car has limited space for the layouts of touch display locations. In addition, the users of compact cars have smaller body types which could be problematic for the usage frequency of touch displays without proper consideration of its location. This study focused on the touch display locations that are placed in compact cars. The conditions of this experiment focused on women drivers who drove working vehicles during actual traffic and driving scenarios. The 3-dimensional axes(X, Y, Z) determines the location of the touch display and were analyzed throughout the experiment. The experiment is divided into two experiments. During the first experiment discomfort score of menu touch task while driving are measured according to 24 location alternatives.
Technical Paper

A Study of Layout Regarding Integrated Controls on the Steering Wheel

2013-03-25
2013-01-0036
In order to utilize in-vehicle systems efficiently, many vehicles are becoming equipped with integrated controls near the center fascia or the control box. However, the placement of these control systems can cause safety issues and risks due to visual distractions. In this study, we proposed a new integrated touch screen on the steering wheel. For this experiment, a control system was placed on the steering wheel or the center fascia. 15 participants were required to drive while utilizing vent and navigation control tasks regarding four different locations. Three of these locations were based on the steering wheel (center, upper right, lower right) and one location on the center fascia. Afterwards, the task completion time and visual distraction rate of the different locations were measured and compared. The results showed that a touch screen placed on the upper right section of the steering wheel had better performance and lower user discomfort.
Technical Paper

A Study on Optimal TGS Lever Envelopes based on Human Characteristics

2013-03-25
2013-01-0020
In the field of ergonomics, “reach envelopes” are an important factor to design products that are user friendly. Specifically regarding vehicle controls, the TGS lever affects important features such as console layout. The standard guideline of SAE is only based on AM 95th percentile hand reach. However, due to various human characteristics and sitting positions of the driver, this guideline cannot satisfy all drivers. Therefore, the goal of this study is to develop an optimal TGS lever envelop based on human characteristics. First, the discomfort regression function is extracted through a discomfort experiment and statistical analysis. Secondly, a validation experiment was conducted to compare the estimated discomfort regression value and the measured discomfort value. In addition, another validation test was performed to enhance the package usability and RAMSIS applicability.
Technical Paper

Contribution of Sound to Perception of CVT Performance

2006-04-03
2006-01-0813
Three experiments examined the contribution of sound to the perception of performance using audio recordings made on a test track with a vehicle equipped with a continuously variable transmission (CVT) performing four different maneuvers with four transmission settings. Subjects rated the recordings based on their perceptions of power & performance, pleasantness, smoothness, and loudness. On the track, the low calibration setting (including a flat ratio schedule) had been rated higher for power & performance than the high calibration setting (including a rising ratio schedule). In Experiment 1, where subjects were unaware of the maneuver performed, there was no advantage for the low calibration setting; in Experiment 2, where subjects were aware of the maneuver, the power & performance ratings were opposite to those obtained on the test track. In Experiment 3, drivers of performance cars rated the recordings as more pleasant and smoother than did drivers of other vehicles.
Technical Paper

Corrosion Induced Brake Torque Variation: The Effect from Gray Iron Microstructure and Friction Materials

2005-10-09
2005-01-3919
Brake judder caused by corrosion of gray iron disks was investigated. In this study, the microstructure of the gray iron disks and the friction film developed on the disk surface by commercial friction materials were examined to find the root cause of the corrosion induced brake torque variation. Corrosion of the disk was carried out in an environmental chamber, simulating in-vehicle disk corrosion. Moisture content and acidity of the friction materials were also taken into account for this investigation and brake tests to examine torque variation during brake applications were performed using a single-end brake dynamometer. Results showed that the friction film developed on the disk surface strongly affected the amount of corrosion, while graphite morphology of the gray iron had little effect on the corrosion.
Technical Paper

Compatibility between Handling Agility and Stability of Vehicle using Rear Wheel Steering with Dual-Link Actuators

2024-04-09
2024-01-2761
The experimental control findings of increasing the handling performance so that the yaw motion of the vehicle is nimble and stable utilizing the upgraded rear wheel steering system equipped with dual-link actuators are shown in this work. In most automobiles, the steering axis is well defined in front suspension. However, unless the vehicle's rear suspension is a sort of double wishbone, the steering axis is not clearly defined in regular multi-link rear suspensions. As a result, most current automobiles have a suspension geometry feature in which the camber and toe angles change at the same time when the assist link is changed to steer the back wheels. To create lateral force from the rear tire while preserving maximum tire grip, the dual-link actuators control for modifying the strokes of suspension links must keep the camber angle constant and adjust only the toe angle.
X