Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Reducing Body Development Time by Integrating NVH and Durability Analysis from the Start

Due to the trend to build more vehicle models on a common platform, body development is very often on the critical path in the automotive development process. While the virtual assessment of attributes like crash, structural rigidity or production feasibility is common practice today, it is done less systematically for NVH and durability. They are traditionally only considered close to the availability of prototypes. Performance issues discovered at this stage will lead to additional design cycles which conflicts with the need to further shorten the total development time. The process proposed in this paper results in a better initial design by doing more NVH analysis in the pre-CAD phase and a reduced number of iteration cycles required for NVH and durability engineering by iterating much faster to the final design. Mesh morphing and beam concept analysis make it possible to evaluate and optimize functional performance characteristics based upon predecessor FE models.
Technical Paper

Experimental and Numerical Modelling of Friction Induced Noise in Disc Brakes

Friction-induced vibration is a serious problem in many industrial applications containing systems with rotating and/or sliding parts. Brake noise is a typical example. The critical element in the noise generation process is the combination of friction-induced loads with the dynamics of the braking system. In the present paper, a detailed experimental and numerical study of a specific low-frequency brake squeal problem is made on a simplified brake noise test rig. First, the signal and spatial characteristics of the noise were analyzed by spectral and acoustic holography techniques. A parametric study of influence factors as brake pressure, rotation speed, etc. was made. Operational deformation analysis during squeal confirms the dominant modal behavior of the components, implying the critical role of the assembly structural dynamics.