Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency. Presenter Xianke Lin
Video

Characterization of a New Advanced Diesel Oxidation Catalyst with Low Temperature NOx Storage Capability for LD Diesel

2012-06-18
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO2 oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Journal Article

Combustion System Optimization of a Low Compression-Ratio PCCI Diesel Engine for Light-Duty Application

2009-04-20
2009-01-1464
A new combustion system with a low compression ratio (CR), specifically oriented towards the exploitment of partially Premixed Charge Compression Ignition (PCCI) diesel engines, has been developed and tested. The work is part of a cooperative research program between Politecnico di Torino (PT) and GM Powertrain Europe (GMPT-E) in the frame of Low Temperature Combustion (LTC) diesel combustion-system design and control. The baseline engine is derived from the GM 2.0L 4-cylinder in-line, 4-valve-per-cylinder EU5 engine. It features a CR of 16.5, a single stage VGT turbocharger and a second generation Common Rail (1600 bar). A newly designed combustion bowl was applied. It features a central dome and a large inlet diameter, in order to maximize the air utilization factor at high load and to tolerate advanced injection timings at partial load. Two different piston prototypes were manufactured by changing the internal volume of the new bowl so as to reach CR targets of 15.5 and 15.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

On the High Load Limit of Boosted Gasoline HCCI Engine Operating in NVO Mode

2010-04-12
2010-01-0162
The high load limit of a boosted homogeneous-charge-compression-ignition (HCCI) engine operating on negative-valve-overlap (NVO) was assessed. When operating under stoichiometric condition with no external dilution, the load, as measured by the net indicated mean effective pressure (NIMEP), increased with increase in manifold absolute pressure (MAP), and with decrease in trapped amount of residual gas. The maximum pressure rise rate (MPRR), however, also increased correspondingly. When the MAP and the amount of residual gas were adjusted so that the engine operating point could be held at a constant MPRR value, the NIMEP increased with the simultaneous decrease in MAP and residual until the misfire limit was reached. Therefore if a MPRR ceiling is imposed, the high load limit of an HCCI engine is at the intersection of the constraining MPRR line and the misfire line.
Journal Article

Optimizing the Calibration of a Turbocharged GDI Engine through Numerical Simulation and Direct Optimization

2010-04-12
2010-01-0780
Different optimization strategies for the optimization of the calibration of a turbocharged GDI engine through numerical simulation were analyzed, aiming to evaluate the opportunities offered by direct optimization techniques. A one-dimensional fluid dynamic engine model was used to predict engine performance, taking into account knock and exhaust temperature constraints. Air fuel ratio, spark advance, boost pressure and cam phasing were optimized by means of different optimization strategies, including direct search as well as numerical methods. Both full load (with maximum bmep targets) and part load (with minimum bsfc targets) were considered.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Effects of Rail Pressure, Pilot Scheduling and EGR Rate on Combustion and Emissions in Conventional and PCCI Diesel Engines

2010-04-12
2010-01-1109
In diesel engines the optimization of engine-out emissions, combustion noise and fuel consumption requires the experimental investigation of the effects of different injection strategies as well as of a large number of engine operating variables, such as scheduling of pilot and after pulses, rail pressure, EGR rate and swirl level. Due to the high number of testing conditions involved full factorial approaches are not viable, whereas Design of Experiment techniques have demonstrated to be a valid methodology. However, the results obtained with such techniques require a subsequent critical analysis, so as to investigate the cause and effect relationships between the set of engine operating variables and the combustion process characteristics that affect pollutant formation, noise of combustion and engine efficiency.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

The Effects of Neat Biodiesel Usage on Performance and Exhaust Emissions from a Small Displacement Passenger Car Diesel Engine

2010-05-05
2010-01-1515
The effects of using neat FAME (Fatty Acid Methyl Ester) in a modern small displacement passenger car diesel engine have been evaluated in this paper. In particular the effects on engine performance at full load with standard (i.e., without any special tuning) ECU calibration were analyzed, highlighting some issues in the low end torque due to the lower exhaust gas temperatures at the turbine inlet, which caused a remarkable decrease of the available boost, with a substantial decrease of the engine torque output, far beyond the expected engine derating due to the lower LHV of the fuel. However, further tests carried out after ECU recalibration, showed that the same torque levels measured under diesel operation can be obtained with neat biodiesel too, thus highlighting the potential for maintaining the same level of performance.
Journal Article

Particle Number and Size Distribution from a Small Displacement Automotive Diesel Engine during DPF Regeneration

2010-05-05
2010-01-1552
The aim of this work is to analyze particle number and size distribution from a small displacement Euro 5 common rail automotive diesel engine, equipped with a close coupled aftertreatment system, featuring a DOC and a DPF integrated in a single canning. In particular the effects of different combustion processes on PM characteristics were investigated, by comparing measurements made both under normal operating condition and under DPF regeneration mode. Exhaust gas was sampled at engine outlet, at DOC outlet and at DPF outlet, in order to fully characterize PM emissions through the whole exhaust line. After a two stage dilution system, sampled gas was analyzed by means of a TSI 3080 SMPS, in the range from 6 to 240 nm. Particle number and size distribution were evaluated at part load operating conditions, representative of urban driving.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

A Feed-Forward Approach for the Real-Time Estimation and Control of MFB50 and SOI In Diesel Engines

2014-05-05
2014-01-9046
Feed-forward low-throughput models have been developed to predict MFB50 and to control SOI in order to achieve a specific MFB50 target for diesel engines. The models have been assessed on a GMPT-E Euro 5 diesel engine, installed at the dynamic test bench at ICEAL-PT (Internal Combustion Engine Advanced Laboratory at the Politecnico di Torino) and applied to both steady state and transient engine operating conditions. MFB50 indicates the crank angle at which 50% of the fuel mass fraction has burned, and is currently used extensively in control algorithms to optimize combustion phasing in diesel engines in real-time. MFB50 is generally used in closed-loop combustion control applications, where it is calculated by the engine control unit, cycle-by-cycle and cylinder by-cylinder, on the basis of the measured in-cylinder pressure trace, and is adjusted in order to reduce the fuel consumption, combustion noise and engine-out emissions.
Journal Article

A Dual Grid Curved Beam Finite Element Model of Piston Rings for Improved Contact Capabilities

2014-04-01
2014-01-1085
Piston rings are large contributors to friction losses in internal combustion engines. To achieve higher engine efficiency, low friction ring packs that can maintain good sealing performance must be designed. To support this effort, simulation tools have been developed to model the performance of piston rings during engine operation. However, the challenge of predicting oil consumption, blow by, and ring pack friction with sufficient accuracy remains. This is mostly due to the complexity of this system. Ring dynamics, deformation, interaction with liner and piston, gas and lubricant flow must all be studied together to make relevant predictions. In this paper, a new curved beam finite element model of piston rings is proposed. Ring structural deformation and contact with the liner are treated on two separate grids. A comparison with ring models in the literature and analytical solutions shows that it can provide accurate results efficiently.
Journal Article

A Reduced Order Model for the Aeroelastic Analysis of Flexible Wings

2013-09-17
2013-01-2158
The aeroelastic design of highly flexible wings, made of extremely light structures yet still capable of carrying a considerable amount of non-structural weights, requires significant effort. The complexity involved in such design demands for simplified mathematical tools based on appropriate reduced order models capable of predicting the accurate aeroelastic behaviour. The model presented in this paper is based on a consistent nonlinear beam model, capable of simulating the unconventional aeroelastic behaviour of flexible composite wings. The partial differential equations describing the wing dynamics are reduced to a dimensionless form in terms of three ordinary differential equations using a discretization technique, along with Galerkin's method. Within this approach the nonlinear structural model an unsteady indicial based aerodynamic model with dynamic stall are coupled.
X