Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

LMTAS Aircrew - Centered Design: Past, Present, and Future

1997-10-01
975619
Three phases of crew-centered design evolution at Lockheed Martin Tactical Aircraft Systems are described in which organizational, technology, and process influences are considered. Lessons learned in each phase are highlighted. The first phase focuses on the crew-centered design process for the F-16A tactical fighter prior to 1985. During this period a sizable human factors group tackled crew-centered issues in design. In the second phase, spanning a period from 1986 to 1996, the Pilot-Vehicle Interface group refined the aircrew-centered design process for product improvements. The third phase of crew-centered design focuses on the development of formalized processes and tools which can be applied to the design of present and future advanced fighter systems. In this phase, from 1997 and beyond, crew-centered design processes address operation, maintenance, and manufacturing interests across several engineering design disciplines.
Technical Paper

Use of Discrete Event Simulation in New Aircraft Design

1999-06-05
1999-01-2269
Design and manufacturing engineers engaged in the conceptual and detail design stages of an aircraft have an ever increases number of tools and resources. However, these tools deal mainly with the physical structure and properties of the aircraft. Recently an increased effort has been made to take into account the producibil-ity and cost of an aircraft during the design phase. One of the tools being used by Lockheed Martin Tactical Aircraft Systems to accomplish this is Discrete Event Simulation. This form of simulation models dynamic production, information, and material flows. It enables an engineer to have greater visibility into the effects that he/ she makes on the overall aircraft production system. Machines and processes with different cost, speed, quality, and maintenance properties can be analyzed with respect to the system to justify their inclusion.
X