Refine Your Search

Topic

Search Results

Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

2011-09-11
2011-24-0209
Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Technical Paper

Performance and Exhaust Emission Evaluation of a Small Diesel Engine Fuelled with Coconut Oil Methyl Esters

1998-02-23
981156
Renewable sources of energy need to be developed to fulfill future energy demands in areas such as the Maldives where traditional sources of raw materials are limited or non-existent. This paper explores the use of an alternative fuel derived from coconut oil that can be produced in the Maldives and can be used in place of diesel fuel. The main advantage of this particular fuel is that it is a highly saturated oil with a calorific value close to standard diesel fuel. The viscosity of the crude coconut oil is much higher than standard diesel fuel. To reduce the viscosity and to make the oil more suitable for conventional diesel engines methyl esters were produced using the transesterification process (1). The engine performed well on the coconut oil methyl esters although there was a small reduction in power consistent with the lower calorific value of the alternative fuel. Comparative performance data together with the emission levels for the two fuels are presented.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

Low Power Autoselective Regeneration of Monolithic Wall Flow Diesel Particulate Filters

2009-06-15
2009-01-1927
This paper presents research into a novel autoselective electric discharge method for regenerating monolithic wall flow diesel particulate filters using low power over the entire range of temperatures and oxygen concentrations experienced within the exhaust systems of modern diesel engines. The ability to regenerate the filter independently of exhaust gas temperature and composition significantly reduces system complexity compared to other systems. In addition, the system does not require catalyst loading and uses only mass- produced electronic and electrical components, thus reducing the cost of the after-treatment package. Purpose built exhaust gas simulation test rigs were used to evaluate, develop and optimise the autoselective regeneration system. On-engine testing demonstrated the performance of the autoselective regeneration process under real engine conditions.
Technical Paper

Prediction of NOx Emissions of a Heavy Duty Diesel Engine with a NLARX Model

2009-11-02
2009-01-2796
This work describes the application of Non-Linear Autoregressive Models with Exogenous Inputs (NLARX) in order to predict the NOx emissions of heavy-duty diesel engines. Two experiments are presented: 1.) a Non-Road-Transient-Cycle (NRTC) 2.) a composition of different engine operation modes and different engine calibrations. Data sets are pre-processed by normalization and re-arranged into training and validation sets. The chosen model is taken from the MATLAB Neural Network Toolbox using the algorithms provided. It is teacher forced trained and then validated. Training results show recognizable performance. However, the validation shows the potential of the chosen method.
Technical Paper

Aerodynamic Drag of a Compact SUV as Measured On-Road and in the Wind Tunnel

2002-03-04
2002-01-0529
Growing concerns about the environmental impact of road vehicles will lead to a reduction in the aerodynamic drag for all passenger cars. This includes Sport Utility Vehicles (SUVs) and light trucks which have relatively high drag coefficients and large frontal area. The wind tunnel remains the tool of choice for the vehicle aerodynamicist, but it is important that the benefits obtained in the wind tunnel reflect improvements to the vehicle on the road. Coastdown measurements obtained using a Land Rover Freelander, in various configurations, have been made to determine aerodynamic drag and these have been compared with wind tunnel data for the same vehicle. Repeatability of the coastdown data, the effects of drag variation near to zero yaw and asymmetry in the drag-yaw data on the results from coastdown testing are assessed. Alternative blockage corrections for the wind tunnel measurements are examined.
Technical Paper

Mode Transition Optimisation for Variable Displacement Engines

2016-04-05
2016-01-0619
The deactivation of one or more cylinders in internal combustion engines has long been established in literature as a means of reducing engine pumping losses and thereby improving brake specific fuel consumption. As down-sizing and down-speeding of modern engines becomes more extreme, drivability issues associated with mode transition become more acute and need to be managed within a suitable calibration framework. This paper presents methodology by which a calibration may be deduced for optimal mode-transitioning in respect of minimising the torque disturbance as cylinders are deactivated and re-activated. At the outset of this study a physics based engine model is used to investigate the key parameters that influence the transition. Having understood these, experiments are designed to establish the level of mode transition disturbance using quantitative statistical indicators such that the cost function may be defined and an optimisation undertaken.
Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Technical Paper

Optical Diagnostics and CFD Validation of Jacket Cooling System Filling and the Occurrence of Trapped Air

2012-04-16
2012-01-1213
This paper reports the findings from an experimental investigation of the engine cooling jacket filling process for a medium duty off-highway diesel engine to characterise the physical processes that lead to the occurrence of trapped air. The motivation for the project was to provide knowledge and data to aid the development of a computational design tool capable of predicting the amount and location of trapped air in a cooling circuit following a fill event. To quantify the coolant filling process, a transparent replica of a section of the cylinder head cooling core was manufactured from acrylic to allow the application of optical diagnostic techniques. Experimentation has characterised the coolant filling process through the use of three optical techniques. These include the two established methods of High-Speed Imaging and Particle Image Velocimetry (PIV), as well as a novel approach developed for tracking the liquid-air interface during the fill event.
Technical Paper

Challenges and Potential of Intra-Cycle Combustion Control for Direct Injection Diesel Engines

2012-04-16
2012-01-1158
The injection timing of a Diesel internal combustion engine typically follows a prescribed sequence depending on the operating condition using open loop control. Due to advances in sensors and digital electronics it is now possible to implement closed loop control based on in cylinder pressure values. Typically this control action is slow, and it may take several cycles or at least one cycle (cycle-to-cycle control). Using high speed sensors, it becomes technically possible to measure pressure deviations and correct them within the same cycle (intra-cycle control). For example the in cylinder pressure after the pilot inject can be measured, and the timing of the main injection can be adjusted in timing and duration to compensate any deviations in pressure from the expected reference value. This level of control can significantly reduce the deviations between cycles and cylinders, and it can also improve the transient behavior of the engine.
Technical Paper

Review of Selection Criteria for Sensor and Actuator Configurations Suitable for Internal Combustion Engines

2018-04-03
2018-01-0758
This literature review considers the problem of finding a suitable configuration of sensors and actuators for the control of an internal combustion engine. It takes a look at the methods, algorithms, processes, metrics, applications, research groups and patents relevant for this topic. Several formal metric have been proposed, but practical use remains limited. Maximal information criteria are theoretically optimal for selecting sensors, but hard to apply to a system as complex and nonlinear as an engine. Thus, we reviewed methods applied to neighboring fields including nonlinear systems and non-minimal phase systems. Furthermore, the closed loop nature of control means that information is not the only consideration, and speed, stability and robustness have to be considered. The optimal use of sensor information also requires the use of models, observers, state estimators or virtual sensors, and practical acceptance of these remains limited.
Technical Paper

Explicit Model Predictive Control of the Diesel Engine Fuel Path

2012-04-16
2012-01-0893
For diesel engines, fuel path control plays a key role in achieving optimal emissions and fuel economy performance. There are several fuel path parameters that strongly affect the engine performance by changing the combustion process, by modifying for example, start of injection and fuel rail pressure. This is a multi-input multi-output problem. Linear Model Predictive Control (MPC) is a good approach for such a system with optimal solution. However, fuel path has fast dynamics. On-line optimisation MPC is not the good choice to cope with such fast dynamics. Explicit MPC uses off-line optimisation, therefore, it can be used to control the system with fast dynamics.
Technical Paper

The Value of Component in the Loop Approaches to Exhaust Energy Management in Hybrid Vehicles

2012-04-16
2012-01-1024
Recent work on thermo-electric (TE) systems has highlighted the need for refined heat transfer design as well as the long standing need for improved materials performance. Recent work on heat transfer for TE systems has shown that enhanced heat transfer is needed over and above what would normally be seen in a vehicle exhaust system. In particular a better understanding of flow development and boundary layer behaviour is needed to support new design proposals. In the meantime, recent work in TE materials suggests that with the use of skutterudites significant performance benefits can accrue over existing materials. The current generation of TE materials have non-dimensional thermoelectric figure of merit (ZT) values of around 1. Skutterudites have been demonstrated to have ZT values of about 1.4 and can maintain these values over a wider temperature range than do existing materials through the engineering of the TE device.
Technical Paper

The Potential of Fuel Metering Control for Optimising Unburned Hydrocarbon Emissions in Diesel Low Temperature Combustion

2013-04-08
2013-01-0894
Low temperature combustion (LTC) in diesel engines offers attractive benefits through simultaneous reduction of nitrogen oxides and soot. However, it is known that the in-cylinder conditions typical of LTC operation tend to produce high emissions of unburned hydrocarbons (UHC) and carbon monoxide (CO), reducing combustion efficiency. The present study develops from the hypothesis that this characteristic poor combustion efficiency is due to in-cylinder mixture preparation strategies that are non-optimally matched to the requirements of the LTC combustion mode. In this work, the effects of three key fuel path parameters - injection fuel quantity ratio, dwell and injection timing - on CO and HC emissions were examined using a Central Composite Design (CCD) Design of Experiments (DOE) method.
Technical Paper

Experimental Study of DI Diesel Engine Performance Using Three Different Biodiesel Fuels

2006-04-03
2006-01-0234
Methyl esters derived from vegetable oils by the process of transesterification (commonly referred as ‘biodiesel’), can be used as an alternative fuel in compression ignition engines. In this study, three different vegetable oils (rape, soy and waste oil) were used to produce biodiesel fuels that were then tested in a four cylinder direct injection engine, typically used in small diesel genset applications. Engine performance and emissions were recorded at five load conditions and at two different speeds. This paper presents the results obtained for measurements of NOx and smoke opacity at the different speed and load conditions for the three biodiesels, and their blends (5 and 50% v/v) with mineral diesel. A simple combustion analysis was also performed where ignition delay, position and magnitude of peak cylinder pressure and heat release rate were examined to asses how the variation of chemical structure and blend percentage affects engine performance.
Technical Paper

The Effect of EGR on Diesel Engine Wear

1999-03-01
1999-01-0839
As part of an ongoing programme of Exhaust Gas Recirculation (EGR) wear investigations, this paper reports a study into the effect of Exhaust Gas Recirculation, and a variety of interacting factors, on the wear rate of the top piston ring and the liner top ring reversal point on a 1.0 litre/cylinder medium duty four cylinder diesel engine. Thin Layer Activation (TLA - also known as Surface Layer Activation in the US) has been used to provide individual wear rates for these components when engine operating conditions have been varied. The effects of oil condition, EGR level, fuel sulphur content and engine coolant temperature have been investigated at one engine speed at full load. The effects of engine load and uncooled EGR have also been assessed. The effects of these parameters on engine wear are presented and discussed. When EGR was applied a significant increase in wear was observed at EGR levels of between 10% and 15%.
Technical Paper

Real Time Energy Management of Electrically Turbocharged Engines Based on Model Learning

2019-04-02
2019-01-1056
Engine downsizing is a promising trend to decarbonise vehicles but it also poses a challenge on vehicle driveability. Electric turbochargers can solve the dilemma between engine downsizing and vehicle driveability. Using the electric turbocharger, the transient response at low engine speeds can be recovered by air boosting assistance. Meanwhile, the introduction of electric machine makes the engine control more complicated. One emerging issue is to harness the augmented engine air system in a systematical way. Therefore, the boosting requirement can be achieved fast without violating exhaust emission standards. Another raised issue is to design an real time energy management strategy. This is of critical to minimise the required battery capacity. Moreover, using the on-board battery in a high efficient way is essential to avoid over-frequent switching of the electric machine. This requests the electric machine to work as a generator to recharge the battery.
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology

2014-04-01
2014-01-1807
Recovering the braking energy and reusing it can significantly improve the fuel economy of a vehicle which is subject to frequent braking events such as a city bus. As one way to achieve this goal, pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into tanks during braking, and then reuses the compressed air to power an air starter to realize a regenerative Stop-Start function. Unlike the pure electric or hybrid electric passenger car, the pneumatic hybrid city bus uses the rear axle to achieve regenerative braking function. In this paper we discuss research into the blending of pneumatic regenerative braking and mechanical frictional braking at the rear axle. The aim of the braking function is to recover as much energy as possible and at the same time distribute the total braking effort between the front and rear axles to achieve stable braking performance.
Technical Paper

Cycle-Driven Optimization of a Fixed-Structure Controller for Urea Dosing in a Mobile SCR System

2020-11-04
2020-01-5106
A model-based urea-dosing controller has been developed for the selective catalytic reduction (SCR) units on a diesel engine exhaust aftertreatment system (EATS). The SCR units consist of an integrated SCR-coated filter and then followed by a flow-through SCR catalyst. The controller was developed based on an analysis of the data generated from a Millbrook London Transport Bus (MLTB) test cycle fed into a validated model of the SCR-filter and SCR units. The critical system parameters that showed strong correlation with outlet nitrogen oxides (NOx) and ammonia (NH3) emissions were first identified, and then the sensitivity of those parameters was analyzed. The most sensitive system parameters were configured as the controller gain parameters. A proportional controller based on the key parameters with optimized gains settings for the MLTB cycle delivered over a 10% reduction in cumulative NOx emission over the cycle compared to a fixed NH3/NOx ratio (ANR) controller.
X