Refine Your Search

Topic

Author

Search Results

Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

2015-04-14
2015-01-1028
In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics

2018-04-03
2018-01-0705
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach.
Journal Article

A Drag Coefficient for Test Cycle Application

2018-04-03
2018-01-0742
The drag coefficient at zero yaw angle is the single parameter usually used to define the aerodynamic drag characteristics of a passenger car. However, this is usually the minimum drag condition and will, for example, lead to an underestimate of the effect of aerodynamic drag on fuel consumption because the important influence of the natural wind has been excluded. An alternative measure of aerodynamic drag should take into account the effect of nonzero yaw angles and a variant of wind-averaged drag is suggested as the best option. A wind-averaged drag coefficient (CDW) is usually derived for a particular vehicle speed using a representative wind speed distribution. In the particular case where the road speed distribution is specified, as for a drive cycle to determine fuel economy, a relevant drag coefficient can be derived by using a weighted road speed.
Journal Article

Coupled Level-Set Volume of Fluid Simulations of Water Flowing Over a Simplified Drainage Channel With and Without Air Coflow

2017-03-28
2017-01-1552
The motivation for this paper is to predict the flow of water over exterior surfaces of road vehicles. We present simulations of liquid flows on solid surfaces under the influence of gravity with and without the addition of aerodynamic forces on the liquid. This is done using an implementation of a Coupled Level Set Volume of Fluid method (CLSVOF) multiphase approach implemented in the open source OpenFOAM CFD code. This is a high fidelity interface-resolving method that solves for the velocity field in both phases without restrictions on the flow regime. In the current paper the suitability of the approach to Exterior Water Management (EWM) is demonstrated using the representative test cases of a continuous liquid rivulet flowing along an inclined surface with a channel located downstream perpendicular to the oncoming flow.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Journal Article

Development of Model Predictive Controller for SOFC-IC Engine Hybrid System

2009-04-20
2009-01-0146
Fuel cell hybrid systems have emerged rapidly in efforts to reduce emissions. The success of these systems mainly depends on implementation of suitable control architectures. This paper presents a control system design for a novel fuel cell - IC Engine hybrid power system. Control oriented models of the system components are developed and integrated. Based on the simulation results of the system model, the control variables are identified. The main objective for the control design is to manage fuel, air and exhaust flows in a way to deliver the required load on the system within local constraints. The controller developed for regulating flows in the system is based on model predictive control theory. The performance of the overall control system is assessed through simulations on a nonlinear dynamic model.
Journal Article

A Modal-Based Derivation of Transient Pressure Distribution Along the Tyre-Road Contact

2009-04-20
2009-01-0457
The two-dimensional, frictional tyre-road contact interaction is investigated. A transient contact algorithm is developed, consisting of an analytical belt model, a non linear sidewall structure and a discretized viscoelastic tread foundation. The relationship between the magnitude/shape of the predicted two-dimensional pressure distribution and the corresponding belt deformation is identified. The effect of vertical load and the role of sidewall non linearity are highlighted. The modal expansion/reduction method is proposed for the increase of the computational efficiency and the effect of the degree of reduction on the simulation accuracy is presented. The qualitative results are physically explained through the participation of certain modes in the equilibrium solution, offering directions for the application of the modal reduction method in shear force oriented tyre models.
Journal Article

Crankcase Sampling of PM from a Fired and Motored Compression Ignition Engine

2011-09-11
2011-24-0209
Crankcase emissions are a complex mixture of combustion products and aerosol generated from lubrication oil. The crankcase emissions contribute substantially to the total particulate matter (PM) emitted from an engine. Environment legislation demands that either the combustion and crankcase emissions are combined to give a total measurement, or the crankcase gases are re-circulated back into the engine. There is a lack of understanding regarding the physical processes that generate crankcase aerosols, with a paucity of information on the size/mass concentrations of particles present in the crankcase. In this study the particulate matter crankcase emissions were measured from a fired and motored 4-cylinder compression ignition engine at a range of speeds and crankcase locations.
Journal Article

An Investigation into the Wake Structure of Square Back Vehicles and the Effect of Structure Modification on Resultant Vehicle Forces

2011-06-09
2011-37-0015
A large contribution to the aerodynamic drag of a vehicle (30%(1) or more depending on vehicle shape) arises from the low base pressure in the wake region, especially on square-back configurations. A degree of base pressure recovery can be achieved through careful shape optimization, but the flow structures and mechanisms within the wake that cause these base pressure changes are not well understood. A more complete understanding of these mechanisms may provide opportunities for further drag reductions from both passive shape changes and in the future through the use of active flow control technologies. In this work surprisingly large changes in drag and lift coefficients of a square-back style vehicle have been measured as a result of physically small passive modifications. Tests were performed at quarter scale using a simplified vehicle model (Windsor Model) and at full scale using an MPV. The full scale vehicle was tested with and without a flat floor.
Journal Article

Aerodynamic Drag Reduction on a Simple Car-Like Shape with Rear Upper Body Taper

2013-04-08
2013-01-0462
Various techniques to reduce the aerodynamic drag of bluff bodies through the mechanism of base pressure recovery have been investigated. These include, for example, boat-tailing, base cavities and base bleed. In this study a simple body representing a car shape is modified to include tapering of the rear upper body on both roof and sides. The effects of taper angle and taper length on drag and lift characteristics are investigated. It is shown that a significant drag reduction can be obtained with moderate taper angles. An unexpected feature is a drag rise at a particular taper length. Pressure data obtained on the rear surfaces and some wake flow visualisation using PIV are presented.
Journal Article

Insights into Cold-Start DISI Combustion in an Optical Engine Operating at −7°C

2013-04-08
2013-01-1309
Particulate Matter (PM) emissions reduction is an imminent challenge for Direct Injection Spark Ignition (DISI) engine designers due to the introduction of Particulate Number (PN) standards in the proposed Euro 6 emissions legislation aimed at delivering the next phase of air quality improvements. An understanding of how the formation of combustion-derived nanoparticulates in engines is affected by the engine operating temperature is important for air quality improvement and will influence future engine design and control strategies. This investigation has examined the effect on combustion and PM formation when reducing the engine operating temperature to -7°C. A DISI single-cylinder optical research engine was modified to simulate a range of operating temperatures down to the proposed -7°C.
Technical Paper

Performance and Exhaust Emission Evaluation of a Small Diesel Engine Fuelled with Coconut Oil Methyl Esters

1998-02-23
981156
Renewable sources of energy need to be developed to fulfill future energy demands in areas such as the Maldives where traditional sources of raw materials are limited or non-existent. This paper explores the use of an alternative fuel derived from coconut oil that can be produced in the Maldives and can be used in place of diesel fuel. The main advantage of this particular fuel is that it is a highly saturated oil with a calorific value close to standard diesel fuel. The viscosity of the crude coconut oil is much higher than standard diesel fuel. To reduce the viscosity and to make the oil more suitable for conventional diesel engines methyl esters were produced using the transesterification process (1). The engine performed well on the coconut oil methyl esters although there was a small reduction in power consistent with the lower calorific value of the alternative fuel. Comparative performance data together with the emission levels for the two fuels are presented.
Technical Paper

Parametric Study into the Effects of Factors Affecting Real-World Vehicle Exhaust Emission Levels

2007-04-16
2007-01-1084
The work presented investigates the effect of road gradient, head-wind, horizontal road curvature, changes in tyre rolling radius, vehicle drag co-efficient and vehicle weight on real-world emission levels of a modern EURO-IV vehicle. A validated steady-state engine performance map based vehicle modeling approach has been used for the analysis. The results showed that a generalized correction factor to include the effect of road-gradient on real-world emission levels might not yield accurate results, since the emission levels are strongly dependent on the position of the vehicle operating parameters on the engine maps. In addition, it also demonstrated that the inclusion of horizontal road curvature such as roundabouts and traffic islands are essential for the estimation of the real-world emission levels.
Technical Paper

Towards an Open Source Model for Engine Control Systems

2008-06-23
2008-01-1711
Traditionally, university research in engine technology has been focused on fundamental engine phenomena. Increasingly however, research topics are developing in the form of systems issues. Examples include air and exhaust gas recirculation (EGR) management, after-treatment systems, engine cooling, hybrid systems and energy recovery. This trend leads to the need for engine research to be conducted using currently available products and components that are re-configured or incrementally improved to support a particular research investigation. A production engine will include an electronic control unit (ECU) that must be understood and utilised or simply removed and circumvented. In general the intellectual property (IP) limitations places on ECUs by their suppliers mean that they cannot be used. The supplier of the ECU is usually unable to reveal any detail of the implementation. As a consequence any research using production hardware is seriously disadvantaged from the beginning.
Technical Paper

Comparison between Unthrottled, Single and Two-valve Induction Strategies Utilising Direct Gasoline Injection: Emissions, Heat-release and Fuel Consumption Analysis

2008-06-23
2008-01-1626
For a spark-ignition engine, the parasitic loss suffered as a result of conventional throttling has long been recognised as a major reason for poor part-load fuel efficiency. While lean, stratified charge, operation addresses this issue, exhaust gas aftertreatment is more challenging compared with homogeneous operation and three-way catalyst after-treatment. This paper adopts a different approach: homogeneous charge direct injection (DI) operation with variable valve actuations which reduce throttling losses. In particular, low-lift and early inlet valve closing (EIVC) strategies are investigated. Results from a thermodynamic single cylinder engine are presented that quantify the effect of two low-lift camshafts and one standard high-lift camshaft operating EIVC strategies at four engine running conditions; both, two- and single-inlet valve operation were investigated. Tests were conducted for both port and DI fuelling, under stoichiometric conditions.
Technical Paper

Modeling and Control Design of a SOFC-IC Engine Hybrid System

2008-04-14
2008-01-0082
This paper presents a control system design strategy for a novel fuel cell - internal combustion engine hybrid power system. Dynamic control oriented models of the system components are developed. The transient behavior of the system components is investigated in order to determine control parameters and set-points. The analysis presented here is the first step towards development of a controller for this complex system. The results indicate various possibilities for control design and development. A control strategy is discussed to achieve system performance optimization.
Technical Paper

BSFC Investigation Using Variable Valve Timing in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1525
Variable valve actuation in heavy duty diesel engines is not well documented, because of diesel engine feature, such as, unthrottled air handling, which gives little room to improve pumping loss; a very high compression ratio, which makes the clearance between the piston and valve small at the top dead center. In order to avoid strike the piston while maximizing the valve movement scope, different strategies are adopted in this paper: (1) While exhaust valve closing is fixed, exhaust valve opening is changed; (2) While exhaust valve closing is fixed, late exhaust valve opening: (3) While inlet valve opening is fixed, inlet valve closing is changed; (4) Delayed Inlet valve and exhaust valve openings and closings; (5) Changing exhaust valve timing; (6) changing inlet valve timing; (7) Changing both inlet and exhaust timing, will be used.
Technical Paper

The Effect of Free Stream Turbulence on A-pillar Airflow

2009-04-20
2009-01-0003
Various studies have shown that the level of wind noise experienced inside cars on the road in unsteady conditions can be substantially different from that measured in wind tunnel tests conducted using a low turbulence facility. In this paper a simple geometric body representing the cabin of a passenger car has been used to investigate the effects of free stream turbulence, (FST), on the A-pillar vortex flowfield and the side glass pressure distribution. Beneath the A-pillar vortex, both mean and dynamic pressures are increased by FST. The unsteady pressure can be associated with wind noise and the flow visualization shows the peak unsteadiness is related to the separation of the secondary vortex.
X