Refine Your Search

Topic

Author

Search Results

Technical Paper

Laser Spectroscopic Investigation of Flow Fields and NO-Formation in a Realistic SI Engine

1998-02-23
980148
This paper presents results from a quantitative characterization of the NO distribution in a SI engine fueled with a stoichiometric iso-octane/air mixture. Different engine operating conditions were investigated and accurate results on NO concentrations were obtained from essentially the whole cylinder for crank angle ranges from ignition to the mid expansion stroke. The technique used to measure the two-dimensional NO concentration distributions was laser induced fluorescence utilizing a KrF excimer laser to excite the NO A-X (0,2) bandhead. Results were achieved with high temporal and spatial resolution. The accuracy of the measurements was estimated to be 30% for absolute concentration values and 20% for relative values. Images of NO distributions could also be used to evaluate the flame development. Both the mean and the variance of a combustion progress variable could be deduced.
Technical Paper

Fluid Flow, Combustion and Efficiency with Early or Late Inlet Valve Closing

1997-10-01
972937
This paper is a study of the effects of valve timing and how it influences the in-cylinder fluid flow, the combustion, and the efficiency of the engine. An engine load of 4.0 bar imepnet was achieved by setting the inlet valve closing time early or late to enable unthrottled operation. Inlet valve deactivation was also used and asymmetrical valve timing, i.e. valve timing with the two inlet valves opening and closing at different times. The valve timing was altered by switching cam lobes between the experiments. The results indicate a longer flame development period but a faster combustion with early inlet valve closing compared to the throttled case. For late inlet valve closing, a variation in the combustion duration results. As expected, the pumping mean effective pressure (PMEP) was greatly reduced with early and late inlet valve closing compared to the throttled case.
Technical Paper

Homogeneous Charge Compression Ignition (HCCI) Using Isooctane, Ethanol and Natural Gas - A Comparison with Spark Ignition Operation

1997-10-01
972874
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the Internal Combustion (IC) engines. Here, a homogeneous charge is used as in a spark ignited engine but the charge is compressed to auto-ignition as in a diesel. The characteristics of HCCI were compared to SI using a 1.6 liter single cylinder engine with compression ratio 21:1 in HCCI mode and 12:1 in SI mode. Three different fuels were used; isooctane, ethanol and natural gas. Some remarkable results were noted in the experiments: The indicated efficiency of HCCI was much better than for SI operation. Very little NOx was generated with HCCI, eliminating the need for a LeanNOx catalyst. However, HCCI generated more HC and CO than SI operation. Stable and efficient operation with HCCI could be obtained with λ=3 to λ=9 using isooctane or ethanol. Natural gas, with a higher octane number, required a richer mixture to run in HCCI mode.
Technical Paper

Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970856
The influence of variable air-fuel ratio inside a spark ignition engine is examined by the use of an ionization sensor. The measured ion currents are used for predicting the local air-fuel ratio in the vicinity of the spark plug. In order to support the results, a theoretical analysis has been made. An instationary chemical kinetic model burning a mixture of iso-octane and n-heptane is used for the calculations. The results are used to reconstruct the crank angle resolved ion current that has been measured in an engine. This technique has been developed in order to offer a supplementary low-cost facility of controlling the air-fuel ratio within the combustion chamber of an engine.
Technical Paper

In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970857
A model based on an ionization equilibrium analysis, that can relate the ion current to the state of the gas inside the combustion volume, has been presented earlier. This paper introduces several additional models, that together with the previous model have the purpose of improving the pressure predictions. One of the models is a chemistry model that enables us to realistically consider the current contribution from the most relevant species. A second model can predict the crank angle of the peak pressure and thereby substantially increase the accuracy of the pressure predictions. Several other additions and improvements have been introduced, including support for part load engine conditions.
Technical Paper

In-Cylinder Flow in High Speed Two-Stroke Engines with Different Transfer Channels

1997-02-24
970357
2-D LDV measurements were performed in the cylinder of a two-stroke engine. The transfer channels of the cylinders were of two different designs: Open transfer channels and “cup handle” transfer channels. The engine was run at its rated speed, 9000 rpm. Optical access to the cylinder was achieved by replacing the standard cylinder head with a quartz window. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the flow out from the cup handle transfer channels is more directed away from the exhaust port, which promotes loop scavenging. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly towards the middle of the cylinder.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Measurements and Correlation Against Heat-Release

1998-02-23
980483
Wavelet analysis was used to calculate turbulence and mean velocity levels for LDV measurements made in a four valve spark ignition engine. Five different camshafts were tested, and they produce significantly different flow behaviour. The standard cam gives tumble and with valve deactivation, swirl is produced. One camshaft with early inlet valve closing and two camshafts with late inlet valve closing were also tested. The wavelet toolbox for Matlab version 5.1 has been used for the wavelet calculations. The wavelet technique produces both time resolved and frequency resolved velocity information. The results indicate some influence of the turbulence frequency content on the rate of heat release. Correlation against heat-release can be seen for different scales of turbulence. The breakdown of the tumble (low frequency turbulence) into high frequency turbulence can be seen clearly.
Technical Paper

Measurements of Turbulent Flame Speed and Integral Length Scales in a Lean Stationary Premixed Flame

1998-02-23
981050
Turbulent premixed natural gas - air flame velocities have been measured in a stationary axi-symmetric burner using LDA. The flame was stabilized by letting the flow retard toward a stagnation plate downstream of the burner exit. Turbulence was generated by letting the flow pass through a plate with drilled holes. Three different hole diameters were used, 3, 6 and 10 mm, in order to achieve different turbulent length scales. Turbulent integral length scales were measured using two-point LDA and the stretching in terms of the Karlovitz number could be estimated from these measurements. The results support previous studies indicating that stretching reduces the flame speed.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Investigation of End-Gas Temperature and Pressure Increases in Gasoline Engines and Relevance for Knock Occurrence

1997-05-01
971671
A detailed analysis of the end-gas temperature and pressure in gasoline engines has been performed. This analysis leads to a simplified zero-dimensional model, that considers both, the compression and the expansion of the end-gas by the piston movement, and the compression by the flame front. If autoignition occurs in the end-gas the sudden rise of the pressure and the heat release is calculated. The rate form of the first law of thermodynamics for a control volume combined with the mass conservation equation for an unsteady and a uniform-flow process are applied. The heat of formation in the end-gas due to the chemical activity has been taken into account. In addition, a chemical kinetic model has been applied in order to study the occurrence of autoignition and prediction of knock.
Technical Paper

Combustion Chambers for Supercharged Natural Gas Engines

1997-02-24
970221
This work is a continuation of earlier research conducted on the effects of different combustion chambers on turbulence, combustion, emissions and efficiency for natural gas converted diesel bus engines. In this second measurement series the engine (Volvo TD102) was supercharged to enable bmep up to 18 bar at λ = 1.6-1.9. Six different combustion chambers were used. The results show that different geometrical combustion chambers, with the same compression ratio (12:1), have very different combustion performance. A high rate of heat release is favorable for lean operation, and the design of the combustion chamber is very important for the knock and misfire limits.
Technical Paper

Flame Reconstruction in Spark Ignition Engines

1997-10-01
972825
The present paper aims at discussing the flow/flame interaction in a lean burn spark ignition engine. The mean velocity and cycle resolved turbulence are measured with laser Doppler velocimetry. The cylinder pressure is recorded and a one-zone heat release calculation performed. The very early part of flame propagation is measured using two orthogonal Schlieren systems, each capturing one image of the progressing flame at a given time after spark onset. The two resulting 2D images are then, after preprocessing, used to reconstruct the three-dimensional flame. The volume of the true flame is estimated by simulating, using Markov Chain Monte Carlo techniques, a number of possible flames that are consistent with the projections on the images. The uncertainty of the estimated flame volume is given by the variation of the volume estimates. In the calculations, the volume of that part of the spark plug that is inside the flame is subtracted.
Technical Paper

A Study of a Glow Plug Ignition Engine by Chemiluminescence Images

2007-07-23
2007-01-1884
An experimental study of a glow plug engine combustion process has been performed by applying chemiluminescence imaging. The major intent was to understand what kind of combustion is present in a glow plug engine and how the combustion process behaves in a small volume and at high engine speed. To achieve this, images of natural emitted light were taken and filters were applied for isolating the formaldehyde and hydroxyl species. Images were taken in a model airplane engine, 4.11 cm3, modified for optical access. The pictures were acquired using a high speed camera capable of taking one photo every second or fourth crank angle degree, and consequently visualizing the progress of the combustion process. The images were taken with the same operating condition at two different engine speeds: 9600 and 13400 rpm. A mixture of 65% methanol, 20% nitromethane and 15% lubricant was used as fuel.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Technical Paper

Improving Ion Current Feedback for HCCI Engine Control

2007-10-29
2007-01-4053
In HCCI you do not have the same control of the combustion like in SI and Diesel engines. Controlling the start of a combustion event is a difficult task and requires feedback from previous cycles. This feedback can be retrieved from ion current measurements. By applying a voltage over the spark gap, ions will lead a current and a signal that represents the combustion in the cylinder will be retrieved. Voltages of 450 V were used. The paper describes a new method to enhance the combustion phasing from the Ion current trace in HCCI engines. The method is using the knowledge of how the signal should look. This is known due to the fact that the shape of the ion current signal is similar from cycle to cycle. This new observation is shown in the paper. Also the correlation between the ion current and CA50 was studied. Later the signals have been used for combustion feedback.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Effect of Temperature Stratification on the Auto-ignition of Lean Ethanol/Air Mixture in HCCI engine

2008-06-23
2008-01-1669
It has been known from multi-zone simulations that HCCI combustion can be significantly affected by temperature stratification of the in-cylinder gas. With the same combustion timing (i.e. crank angles at 50% heat release, denoted as CA50), large temperature stratification tends to prolong the combustion duration and lower down the in-cylinder pressure-rise-rate. With low pressure-rise-rate HCCI engines can be operated at high load, therefore it is of practical importance to look into more details about how temperature stratification affects the auto-ignition process. It has been realized that multi-zone simulations can not account for the effects of spatial structures of the stratified temperature field, i.e. how the size of the hot and cold spots in the temperature field could affect the auto-ignition process. This question is investigated in the present work by large eddy simulation (LES) method which is capable of resolving the in-cylinder turbulence field in space and time.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

2007-08-05
2007-01-3606
Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
X