Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigations of the Influence of Mixture Preparation on Cyclic Variations in a SI-Engine, Using Laser Induced Fluorescence

To study the effect of different injection timings on the charge inhomogeneity, planar laser-induced fluorescence (PLIF) was applied to an operating engine. Quantitative images of the fuel distribution within the engine were obtained. Since the fuel used, iso-octane, does not fluoresce, a dopant was required. Three-pentanone was found to have vapour pressure characteristics similar to those of iso-octane as well as low absorption and suitable spectral properties. A worst case estimation of the total accuracy from the PLIF images gives a maximum error of 0.03 in equivalence ratio. The results show that an early injection timing gives a higher degree of charge inhomogeneity close to the spark plug. It is also shown that charge inhomogeneity gives a more unstable engine operation. A correlation was noted between the combustion on a cycle to cycle basis and the average fuel concentration within a circular area close to the spark plug center.
Technical Paper

Residual Gas Visualization with Laser Induced Fluorescence

The influence of residual gases on the cycle-to-cycle variations in engine combustion was investigated. Two-photon planar laser-induced fluorescence was used for 2D-visualization of residual gas water. In order to avoid influence from fuel fluorescence and inhomogeneities premixed natural gas was used as fuel. Measurements were conducted at different load conditions with varying inlet manifold pressure. To find out how the residual gas distribution influences the combustion process the pressure development during combustion was monitored. From the pressure information a measure of the combustion rate at different phases of the flame development was calculated. The correlation between residual gas distribution and combustion rate was evaluated on a cycle to cycle basis. The results show that with an inlet manifold pressure of 0.3 bar the correlation between residual gas fraction and rate of combustion were 0.5-0.6. At full load though, lower correlation was found.