Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Fuel Distribution in an Air Assist Direct Injected Spark Ignition Engine with Central Injection and Spark Plug Measured with Laser Induced Fluorescence

2000-06-19
2000-01-1898
The fuel distribution in an air assist direct injection engine was measured with Planar Laser Induced Fluorescence, PLIF. The engine was fueled with isooctane and 3-pentanon was used as the fuel tracer. The optical engine was of the prolonged piston type, with a quartz ring in the upper part of the cylinder. Both the fuel injector and the spark plug were centrally located in the cylinder head. Two different pistons were examined: flat piston and bowl in piston. Results show that the differences in fuel stratification are very large for the flat piston compared to the piston with a bowl.
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
X