Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

An Ionization Equilibrium Analysis of the Spark Plug as an Ionization Sensor

The use of a spark plug as an ionization sensor in an engine, and its physical and chemical explanation has been investigated. By applying a small constant DC voltage across the electrodes of the spark plug and measuring the current through the electrode gap, the state of the gas can be probed. An analytical expression for the current as a function of temperature is derived, and an inverse relation, where the pressure is a function of the current, is also presented. It is also found that a relatively minor species, NO, seems to be the major agent responsible for the conductivity of the hot gas in the spark gap.
Technical Paper

The Influence of a Late In-Cylinder Air Injection on In-Cylinder Flow Measured with Particle Image Velocimetry (PIV)

During development of an air assisted, direct injection combustion system, it was found that an air pulse during the late part of compression stroke significantly shortened the combustion duration and extended the lean limits of the engine. The effect of an injection of pure air through an air assist direct injector was studied with Particle Image Velocimetry, PIV. Results showed that an air pulse during the compression stroke significantly speeded up in-cylinder velocities, which also was showed in the heat release analysis. A system to use low density seeding particles was developed and is presented in the paper.
Technical Paper

Employing an Ionization Sensor for Combustion Diagnostics in a Lean Burn Natural Gas Engine

An ionization sensor has been used to study the combustion process in a six-cylinder lean burn, truck-sized engine fueled with natural gas and optimized for low emissions of nitric oxides. The final goal of the investigations is to study the prospects of using the ionization sensor for finding the optimal operating position with respect to low NOx emission and stable engine operation. The results indicate that unstable combustion can be detected by analyzing the coefficient of variation (CoV) of the detector current amplitude. Close relationships between this measure and the CoV of the indicated mean effective pressure have been found during an air-fuel ratio scan with fixed ignition advance.
Technical Paper

Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor

The influence of variable air-fuel ratio inside a spark ignition engine is examined by the use of an ionization sensor. The measured ion currents are used for predicting the local air-fuel ratio in the vicinity of the spark plug. In order to support the results, a theoretical analysis has been made. An instationary chemical kinetic model burning a mixture of iso-octane and n-heptane is used for the calculations. The results are used to reconstruct the crank angle resolved ion current that has been measured in an engine. This technique has been developed in order to offer a supplementary low-cost facility of controlling the air-fuel ratio within the combustion chamber of an engine.
Technical Paper

In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor

A model based on an ionization equilibrium analysis, that can relate the ion current to the state of the gas inside the combustion volume, has been presented earlier. This paper introduces several additional models, that together with the previous model have the purpose of improving the pressure predictions. One of the models is a chemistry model that enables us to realistically consider the current contribution from the most relevant species. A second model can predict the crank angle of the peak pressure and thereby substantially increase the accuracy of the pressure predictions. Several other additions and improvements have been introduced, including support for part load engine conditions.