Refine Your Search

Search Results

Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

The Effect of Displacement on Air-Diluted Multi-Cylinder HCCI Engine Performance

2006-04-03
2006-01-0205
The main benefit of HCCI engines compared to SI engines is improved fuel economy. The drawback is the diluted combustion with a substantially smaller operating range if not some kind of supercharging is used. The reasons for the higher brake efficiency in HCCI engines can be summarized in lower pumping losses and higher thermodynamic efficiency, due to higher compression ratio and higher ratio of specific heats if air is used as dilution. In the low load operating range, where HCCI today is mainly used, other parameters as friction losses, and cooling losses have a large impact on the achieved brake efficiency. To initiate the auto ignition of the in-cylinder charge a certain temperature and pressure have to be reached for a specific fuel. In an engine with high in-cylinder cooling losses the initial charge temperature before compression has to be higher than on an engine with less heat transfer.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Measurements and Correlation Against Heat-Release

1998-02-23
980483
Wavelet analysis was used to calculate turbulence and mean velocity levels for LDV measurements made in a four valve spark ignition engine. Five different camshafts were tested, and they produce significantly different flow behaviour. The standard cam gives tumble and with valve deactivation, swirl is produced. One camshaft with early inlet valve closing and two camshafts with late inlet valve closing were also tested. The wavelet toolbox for Matlab version 5.1 has been used for the wavelet calculations. The wavelet technique produces both time resolved and frequency resolved velocity information. The results indicate some influence of the turbulence frequency content on the rate of heat release. Correlation against heat-release can be seen for different scales of turbulence. The breakdown of the tumble (low frequency turbulence) into high frequency turbulence can be seen clearly.
Technical Paper

The Effect of Intake Temperature on HCCI Operation Using Negative Valve Overlap

2004-03-08
2004-01-0944
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. This implementation requires only minor modifications of the standard SI engine and allows SI operation outside the operating range of HCCI. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. A heat exchanger is utilized to heat or cool the intake air, not as a means of combustion control but in order to simulate realistic variations in ambient temperature. The combustion is monitored in real time using cylinder pressure sensors. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. However, for a practical application the intake temperature will vary both geographically and from time to time.
Technical Paper

Laser Spectroscopic Investigation of Flow Fields and NO-Formation in a Realistic SI Engine

1998-02-23
980148
This paper presents results from a quantitative characterization of the NO distribution in a SI engine fueled with a stoichiometric iso-octane/air mixture. Different engine operating conditions were investigated and accurate results on NO concentrations were obtained from essentially the whole cylinder for crank angle ranges from ignition to the mid expansion stroke. The technique used to measure the two-dimensional NO concentration distributions was laser induced fluorescence utilizing a KrF excimer laser to excite the NO A-X (0,2) bandhead. Results were achieved with high temporal and spatial resolution. The accuracy of the measurements was estimated to be 30% for absolute concentration values and 20% for relative values. Images of NO distributions could also be used to evaluate the flame development. Both the mean and the variance of a combustion progress variable could be deduced.
Technical Paper

Particle Image Velocimetry Flow Measurements and Heat-Release Analysis in a Cross-Flow Cylinder Head

2002-10-21
2002-01-2840
A specially designed cylinder head, enabling unthrottled operation with a standard cam-phasing mechanism, was tested in an optical single-cylinder engine. The in-cylinder flow was measured with particle image velocimetry (PIV) and the results were compared with heat release and emission measurements. The article also discusses effects of residual gas and effective compression ratio on heat-release and emissions. The special design of the cylinder head, with one inlet and one exhaust valve per camshaft, made it possible to operate the engine unthrottled at part load. Cam phasing led to late inlet valve closing, but also to increased valve overlap. The exhaust valve closing was late in the intake stroke, resulting in high amounts of residual gases. Two different camshafts were used with late inlet valve closing. One of the camshafts had shorter valve open duration on the phased exhaust cam lobe.
Technical Paper

Early Swedish Hot-Bulb Engines - Efficiency and Performance Compared to Contemporary Gasoline and Diesel Engines

2002-03-04
2002-01-0115
“Hot Bulb engines” was the popular name of the early direct injected 2-stroke oil engine, invented and patented by Carl W. Weiss 1897. This paper covers engines of this design, built under license in Sweden by various manufacturers. The continuous development is demonstrated through examples of different combustion chamber designs. The material is based on official engine performance evaluations on stationary engines and farm tractors from 1899 to 1995 made by the National Machinery Testing Institute in Sweden (SMP). Hot-bulb, diesel and spark ignited engines are compared regarding efficiency, brake mean effective pressure and specific power (power per displaced volume). The evaluated hot-bulb engines had a fairly good efficiency, well matching the contemporary diesel engines. At low mean effective pressures, the efficiency of the hot-bulb engines was even better than that of subsequent diesel engines.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

2002-03-04
2002-01-0239
SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

Cylinder to Cylinder and Cycle to Cycle Variations in a Six Cylinder Lean Burn Natural Gas Engine

2000-06-19
2000-01-1941
The cylinder to cylinder and cycle to cycle variations were measured in a production type Volvo natural gas engine. Cylinder pressure was measured in all six cylinders. Emission measurements were performed individually after all cylinders, and commonly after the turbocharger. Measurements (ECE R49 13-mode) were performed with different spark gap and two different locations for fuel injection, one before the throttle and one before the turbocharger. Heat-release and lambda calculations show substantial cylinder to cylinder variations, due to lambda variations between the cylinders. The slow burn combustion chamber, with low turbulence, results in high cycle to cycle variations (> 100% COV imep) for some of the load cases.
Technical Paper

Fuel Distribution in an Air Assist Direct Injected Spark Ignition Engine with Central Injection and Spark Plug Measured with Laser Induced Fluorescence

2000-06-19
2000-01-1898
The fuel distribution in an air assist direct injection engine was measured with Planar Laser Induced Fluorescence, PLIF. The engine was fueled with isooctane and 3-pentanon was used as the fuel tracer. The optical engine was of the prolonged piston type, with a quartz ring in the upper part of the cylinder. Both the fuel injector and the spark plug were centrally located in the cylinder head. Two different pistons were examined: flat piston and bowl in piston. Results show that the differences in fuel stratification are very large for the flat piston compared to the piston with a bowl.
Technical Paper

Automatic Reduction of Detailed Chemical Reaction Mechanisms for Autoignition Under SI Engine Conditions

2000-06-19
2000-01-1895
A method for automatic reduction of detailed reaction mechanisms using simultaneous sensitivity, reaction flow and lifetime analysis has been developed and applied to a two-zone model of an SI engine fuelled with Primary Reference Fuel (PRF). Species which are less relevant for the occurrence of autoignition in the end gas are declared redundant. They are identified and eliminated for different pre-set minimum levels of reaction flow and sensitivity. The resulting skeletal mechanism is valid in the ranges of initial and boundary values for which the analyses have been performed. A measure of species lifetime is calculated from the chemical source terms, and the species with the lifetime shorter than and mass-fraction less than specified limits are selected for removal.
Technical Paper

Prediction of Heat Transfer to the Walls for Autoignition Related Situations in SI Engines

2000-03-06
2000-01-1084
A theoretical investigation is presented concerning how the heat transfer process from the gas in the combustion chamber, burned as well as the unburned gas regions, to the walls is affected by the autoignition phenomenon in SI engines. The zonal model in ref. [1] is adapted for the calculations. The radiative heat flux during the heat release period and the heat transfer in the thermal boundary layer by convection are predicted for situations when autoignition has occurred. The cylinder wall temperature is also used as a parameter in this study. The effects of engine operating parameters such as engine speed, timing of ignition, duration time of flame propagation and the fuel parameter Research Octane Number, i.e., RON, on the heat flux to the walls have been studied. The heat release is calculated for a detailed chemical kinetic model, refs. [1, 2 and 3].
Technical Paper

Effect of Inhomogeneities in the End Gas Temperature Field on the Autoignition in SI Engines

2000-03-06
2000-01-0954
This paper reports an one–dimensional modeling procedure of the hot spot autoignition with a detailed chemistry and multi–species transport in the end gas in an SI engine. The governing equations for continuity of mass, momentum, energy and species for an one–dimensional, unsteady, compressible, laminar, reacting flow and thermal fields are discretized and solved by a fully implicit method. A chemical kinetic mechanism is used for the primary reference fuels n–heptane and iso–octane. This mechanism contains 510 chemical reactions and 75 species. The change of the cylinder pressure is calculated from both flame propagation and piston movement. The turbulent velocity of the propagating flame is modeled by the Wiebe function. Adiabatic conditions, calculated by minimizing Gibb's free energy at each time step, are assumed behind the flame front in the burned gas.
Technical Paper

The Effect of Knock on the Heat Transfer in an SI Engine: Thermal Boundary Layer Investigation using CARS Temperature Measurements and Heat Flux Measurements

2000-10-16
2000-01-2831
It is generally accepted that knocking combustion influences the heat transfer in SI engines. However, the effects of heat transfer on the onset of knock is still not clear due to lack of experimental data of the thermal boundary layer close to the combustion chamber wall. This paper presents measurements of the temperature in the thermal boundary layer under knocking and non-knocking conditions. The temperature was measured using dual-broadband rotational Coherent anti-Stokes Raman Spectroscopy (CARS). Simultaneous time-resolved measurements of the cylinder pressure, at three different locations, and the heat flux to the wall were carried out. Optical access to the region near the combustion chamber wall was achieved by using a horseshoe-shaped combustion chamber with windows installed in the rectangular part of the chamber. This arrangement made CARS temperature measurements close to the wall possible and results are presented in the range 0.1-5 mm from the wall.
Technical Paper

Load Control Using Late Intake Valve Closing in a Cross Flow Cylinder Head

2001-09-24
2001-01-3554
A newly developed cross flow cylinder head has been used for comparison between throttled and unthrottled operation using late intake valve closing. Pressure measurements have been used for calculations of indicated load and heat-release. Emission measurements has also been made. A model was used for estimating the amount of residual gases resulting from the different load strategies. Unthrottled operation using late intake valve closing resulted in lower pumping losses, but also in increased amounts of residual gases, using this cylinder head. This is due to the special design, with one intake valve and one exhaust valve per camshaft. Late intake valve closing was achieved by phasing one of the camshafts, resulting in late exhaust valve closing as well. With very late phasing - i.e. low load - the effective compression ratio was reduced. This, in combination with high amount of residual gases, resulted in a very unstable combustion.
Technical Paper

Experimental Investigations of Flow and Temperature Fields in an SI Engine and Comparison with Numerical Analysis

1999-10-25
1999-01-3541
Two-dimensional cycle-resolved burnt gas temperatures were measured using two line atomic fluorescence (TLAF) in a single cylinder spark ignition car engine. Mapping of the in-cylinder flow was done under the same operating conditions using Particle Imaging Velocimetry (PIV). Experimental data for temperature and flow was compared to results from numerical simulations.
Technical Paper

Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970856
The influence of variable air-fuel ratio inside a spark ignition engine is examined by the use of an ionization sensor. The measured ion currents are used for predicting the local air-fuel ratio in the vicinity of the spark plug. In order to support the results, a theoretical analysis has been made. An instationary chemical kinetic model burning a mixture of iso-octane and n-heptane is used for the calculations. The results are used to reconstruct the crank angle resolved ion current that has been measured in an engine. This technique has been developed in order to offer a supplementary low-cost facility of controlling the air-fuel ratio within the combustion chamber of an engine.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
X