Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Scavenging Flow Velocity in Small Two-Strokes at High Engine Speed

1995-09-01
951789
2D-LDV-measurements were made on the flow from one transfer channel into the cylinder in a small two-stroke SI engine. The LDV measuring volume was located just outside the transfer port. The engine was a carburetted piston-ported crankcase compression chainsaw engine and it was run with wide open throttle at 9000 RPM. The muffler was removed to enable access into the cylinder. No additional seeding was used; the fuel and/or oil was not entirely vaporized as it entered the cylinder. Very high velocities (-275 m/s) were detected in the beginning of the scavenging phase. The horizontal velocity was, during the whole scavenging phase, higher than the vertical.
Technical Paper

The Effect of Transfer Port Geometry on Scavenge Flow Velocities at High Engine Speed

1996-02-01
960366
2-D LDV measurements were performed on two different cylinder designs in a fired two-stroke engine running with wide-open throttle at 9000 rpm. The cylinders examined were one with open transfer channels and one with cup handle transfer channels. Optical access to the cylinder was achieved by removing the silencer and thereby gain optical access through the exhaust port. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the loop-scavenging effect was poor with open transfer channels, but clearly detectable with cup handle channels. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly in the middle of the cylinder. The seeding density was used to obtain information about the fuel concentration in the cylinder during scavenging.
Technical Paper

Crank Angle Resolved HC-Detection Using LIF in the Exhausts of Small Two-Stroke Engines Running at High Engine Speed

1996-10-01
961927
In order to separate the HC-emissions from two-stroke engines into short-circuit losses and emissions due to incomplete combustion, Laser Induced Fluorescence (LIF) measurements were performed on the exhaust gases just outside the exhaust ports of two engines of different designs. The difference between the two engines was the design of the transfer channels. One engine had “finger” transfer channels and one had “cup handle” transfer channels. Apart from that they were similar. The engine with “finger” transfer channels was earlier known to give more short-circuiting losses than the other engine, and that behavior was confirmed by these measurements. Generally, the results show that the emission of hydrocarbons has two peaks, one just after exhaust port opening and one late in the scavenging phase. The spectral information shows differences between the two peaks and it can be concluded that the latter peak is due to short-circuiting and the earlier due to incomplete combustion.
Technical Paper

In-Cylinder Flow in High Speed Two-Stroke Engines with Different Transfer Channels

1997-02-24
970357
2-D LDV measurements were performed in the cylinder of a two-stroke engine. The transfer channels of the cylinders were of two different designs: Open transfer channels and “cup handle” transfer channels. The engine was run at its rated speed, 9000 rpm. Optical access to the cylinder was achieved by replacing the standard cylinder head with a quartz window. No addition of seeding was made, since the fuel droplets were not entirely vaporized as they entered the cylinder and thus served as seeding. Results show that the flow out from the cup handle transfer channels is more directed away from the exhaust port, which promotes loop scavenging. The RMS-value, “turbulence”, was low close to the transfer ports in both cylinders, but increased rapidly towards the middle of the cylinder.
Technical Paper

Cylinder to Cylinder and Cycle to Cycle Variations in a Six Cylinder Lean Burn Natural Gas Engine

2000-06-19
2000-01-1941
The cylinder to cylinder and cycle to cycle variations were measured in a production type Volvo natural gas engine. Cylinder pressure was measured in all six cylinders. Emission measurements were performed individually after all cylinders, and commonly after the turbocharger. Measurements (ECE R49 13-mode) were performed with different spark gap and two different locations for fuel injection, one before the throttle and one before the turbocharger. Heat-release and lambda calculations show substantial cylinder to cylinder variations, due to lambda variations between the cylinders. The slow burn combustion chamber, with low turbulence, results in high cycle to cycle variations (> 100% COV imep) for some of the load cases.
X