Refine Your Search




Search Results

Technical Paper

Ammonia as a Spark Ignition Engine Fuel: Theory and Application

Anhydrous ammonia has been demonstrated to operate successfully as a fuel for spark ignition engines. Principal requirements are that it be introduced in the vapor phase and partly decomposed to hydrogen and nitrogen. Spark timing for maximum performance must be advanced slightly for ammonia but sensitivity to spark timing is little greater than with hydrocarbons. Increasing the cylinder wall temperature aids in effecting successful and reliable operation. The maximum theoretically possible indicated output using ammonia vapor is about 77% of that with hydrocarbon. Specific fuel consumption increase twofold at maximum power and 2-1/2 fold at maximum economy when using ammonia as a replacement for hydrocarbon.
Technical Paper

Comparative Performance of Alcohol and Hydrocarbon Fuels

Three factors are of consequence when considering the comparative performance of alcohols and hydrocarbons as spark ignition engine fuels. These are: relative amounts of products of combustion produced per unit of inducted charge, energy inducted per unit of charge, and latent heat differences among the fuels. Simple analysis showed significant increases in output can be expected from the use of methyl alcohol as compared to hydrocarbon and somewhat lesser improvement can be expected from ethyl alcohol. Attendant increases in fuel consumption, disproportionate to the power increase, can also be predicted. More sophisticated analysis, based upon thermodynamic charts of combustion products, do not necessarily improve correspondence between prediction and engine results.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Technical Paper

Automotive Piston-Engine Noise And Its Reduction - A Literature Survey

This paper reviews the sources of externally radiated automotive piston engine and vehicle noise and describes them in detail. The effects of various design and operational characters on intensity and character of noise, noise measurement, and analysis and identifications procedures are given extensive examination. A summary of current research on the reduction of engine noise is presented.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Journal Article

Model-Based Control of Combustion Phasing in an HCCI Engine

Robust control of combustion phasing in Homogenous Charge Compression Ignition (HCCI) engines is a well-recognized challenge limiting the automotive industry for exploiting HCCI benefits in mass production vehicles. Real-time model-based control of combustion phasing is the key to tackle this daunting challenge. In this paper, a new control oriented model is developed for predicting HCCI combustion phasing over a range of engine operation. The model is validated against the experimental data from a single cylinder Ricardo engine. A model-based integral state feedback controller is designed to control HCCI combustion phasing by modulating the ratio of two Primary Reference Fuels (PRFs). The controller's performance is compared with a manually tuned proportional integral controller.
Technical Paper

A Sequential Chemical Kinetics-CFD-Chemical Kinetics Methodology to Predict HCCI Combustion and Main Emissions

This study presents the development of a new HCCI simulation methodology. The proposed method is based on the sequential coupling of CFD analysis prior to autoignition, followed by multi-zone chemical kinetics analysis of the combustion process during the closed valve period. The methodology is divided into three steps: 1) a 1-zone chemical kinetic model (Chemkin Pro) is used to determine either the intake conditions at IVC to achieve a desired ignition timing or the ignition timing corresponding with given IVC conditions, 2) the ignition timing and IVC conditions are used as input parameters in a CFD model (Fluent 6.3) to calculate the charge temperature profile and mass distribution prior to autoignition, and 3) the temperature profile and mass distribution are fed into a multi-zone chemical kinetic model (Chemkin Pro) to determine the main combustion characteristics.
Technical Paper

A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

Accelerated market penetration of plug-in electric vehicles (PEVs) is presently restricted by the high cost of batteries. Deployment of grid-connected energy storage, which could increase the reliability, efficiency, and cleanliness of the grid, is similarly inhibited by the cost of batteries. Research, development, and manufacturing are underway to reduce cost by lowering material costs, enhance process efficiencies, and increase production volumes. Another approach under consideration is to recover a fraction of the battery cost after the battery has been retired from vehicular service via reuse in other applications, where it may still have sufficient performance to meet the requirements of other energy-storage applications.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Improving Ion Current Feedback for HCCI Engine Control

In HCCI you do not have the same control of the combustion like in SI and Diesel engines. Controlling the start of a combustion event is a difficult task and requires feedback from previous cycles. This feedback can be retrieved from ion current measurements. By applying a voltage over the spark gap, ions will lead a current and a signal that represents the combustion in the cylinder will be retrieved. Voltages of 450 V were used. The paper describes a new method to enhance the combustion phasing from the Ion current trace in HCCI engines. The method is using the knowledge of how the signal should look. This is known due to the fact that the shape of the ion current signal is similar from cycle to cycle. This new observation is shown in the paper. Also the correlation between the ion current and CA50 was studied. Later the signals have been used for combustion feedback.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Transient Emission Predictions With Quasi Stationary Models

Heavy trucks contribute significantly to the overall air pollution, especially NOx and PM emissions. Models to predict the emissions from heavy trucks in real world on road conditions are therefore of great interest. Most such models are based on data achieved from stationary measurements, i.e. engine maps. This type of “quasi stationary” models could also be of interest in other applications where emission models of low complexity are desired, such as engine control and simulation and control of exhaust aftertreatment systems. In this paper, results from quasi stationary calculations of fuel consumption, CO, HC, NOx and PM emissions are compared with time resolved measurements of the corresponding quantities. Measurement data from three Euro 3-class engines is used. The differences are discussed in terms of the conditions during transients and correction models for quasi stationary calculations are presented. Simply using engine maps without transient correction is not sufficient.
Technical Paper

Multi-Output Control of a Heavy Duty HCCI Engine Using Variable Valve Actuation and Model Predictive Control

Autoignition of a homogeneous mixture is very sensitive to operating conditions, therefore fast control is necessary for reliable operation. There exists several means to control the combustion phasing of an Homogeneous Charge Compression Ignition (HCCI) engine, but most of the presented controlled HCCI result has been performed with single-input single-output controllers. In order to fully operate an HCCI engine several output variables need to be controlled simultaneously, for example, load, combustion phasing, cylinder pressure and emissions. As these output variables have an effect on each other, the controller should be of a structure which includes the cross-couplings between the output variables. A Model Predictive Control (MPC) controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure.
Technical Paper

Design Space Exploration of Automotive Platforms in Metropolis

Automotive control applications are implemented over distributed platforms consisting of a number of electronic control units (ECUs) connected by communication buses. During system development, the designer can explore a number of design alternatives: for example, software distribution, software architecture, hardware architecture, and network configuration. Exploring design alternatives efficiently and evaluating them to optimize metrics such as cost, time, resource utilization, and reliability provides an important competitive advantage to OEMs and helps minimize integration risks. We present a methodology (Platform-Based Design) and a framework (Metropolis) to support efficient architecture exploration. We have exercised the methodology and the capabilities of Metropolis for developing a library of automotive architecture components and performed design space exploration on a chassis control sub-system.
Technical Paper

Modelling Diesel Engine Combustion and NOx Formation for Model Based Control and Simulation of Engine and Exhaust Aftertreatment Systems

Emissions standards are becoming increasingly harder to reach without the use of exhaust aftertreatment systems such as Selective Catalytic Reduction and particulate filters. In order to make efficient use of these systems it is important to have accurate models of engine-out emissions. Such models are also useful for optimizing and controlling next-generation engines without aftertreatment using for example exhaust gas recirculation (EGR). Engines are getting more advanced using systems such as common rail fuel injection, variable geometry turbochargers (VGT) and EGR. With these new technologies and active control of the injection timing, more sophisticated models than simple stationary emission maps must be used to get adequate results. This paper is focused on the calculation of engine-out NOx and engine parameters such as cylinder pressure, temperature and gas flows.
Technical Paper

Investigation of Boundary Layer Behaviour in HCCI Combustion using Chemiluminescence Imaging

A five-cylinder diesel engine, converted to a single cylinder operated optical engine is run in Homogeneous Charge Compression Ignition (HCCI) mode. A blend of iso-octane and n-heptane is used as fuel. An experimental study of the horizontal boundary layer between the main combustion and the non-reacting surface of the combustion chamber is conducted as a function of speed, load, swirl and injection strategy. The combustion behaviour is monitored by chemiluminescence measurements. For all cases an interval from -10 to 16 crank angles after top dead center (CAD ATDC) in steps of one CAD are studied. One image-intensified camera observes the boundary layer up close from the side through a quartz cylinder liner while a second camera has a more global view from below to see more large scale structure of the combustion. The averaged chemiluminescence intensity from the HCCI combustion is seen to scale well with the rate of heat release.
Technical Paper

Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation

In this paper the combustion chamber wall temperature was measured by the use of thermographic phosphor. The temperature was monitored over a large time window covering a load transient. Wall temperature measurement provide helpful information in all engines. This temperature is for example needed when calculating heat losses to the walls. Most important is however the effect of the wall temperature on combustion. The walls can not heat up instantaneously and the slowly increasing wall temperature following a load transient will affect the combustion events sucseeding the transient. The HCCI combustion process is, due to its dependence on chemical kinetics more sensitive to wall temperature than Otto or Diesel engines. In depth knowledge about transient wall temperature could increase the understanding of transient HCCI control. A “black box” state space model was derived which is useful when predicting transient wall temperature.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.