Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

2007-08-05
2007-01-3606
Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Influence of Inlet Temperature and Hot Residual Gases on the Performances of a Mini High Speed Glow Plug Engine

2006-11-13
2006-32-0057
Nowadays the power supplying systems have a fundamental importance for all small and portable devices. For low power applications, there are two main ways for producing power: electrochemical batteries and mini engines. Even though in recent years many developments have been carried out in improving the design of batteries, the energy density of 1MJ/kg seems to be an asymptotic value. If the energy source is a hydrocarbon fuel, whose energy density is 46 MJ/kg, with an overall efficiency of only 2.5 % it is possible to surpass the electrochemical batteries. On the other hand, having a mini engine, as energy source, implies three main problems: vibrations, noise and emissions. A light (230 g) model airplane engine with a displacement volume of 4.11 cm3 and a geometrical compression ratio of 13.91 has been studied. The work carried out in this paper can be divided basically in three parts.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

ISG (Integrated Starter/Generator)

1992-02-01
920158
The object with this paper is to give performance data for an ISG (Integrated Starter/Generator) which is mounted around the flywheel. With regard to weight, the ISG concept shall be competitive compared to a system with conventional components. The comparison will be based on a 48 V DC-system, and performed for a vehicle which is heavily equipped with electrical loads. The paper focuses on the electrical machine in the ISG (which is of induction type). The convertor is only covered in brief. For design of the start system, a computer program for simulation of a start sequence is used. Models implemented in the program will be discussed. A simplified equation for the load torque during cranking will be explained. For design of the generator system, two different drive cycles will be discussed. One is more related to the traditional load-balance situation during city driving, and the other related to the new load-balance obtained with the characteristic of an induction machine.
Technical Paper

D2, A Natural Evolution from OBD II

1995-02-01
950481
OBD II established a new level for automotive on board diagnostics. This concept, state of the art, is already introduced on the market, MY-94, ( reference 1). We will now go one step further by introducing the Diagnose 2 Concept. With D2 we connect almost all ECU's in a vehicle to the same diagnostic communication bus, connected to the same pin, (pin 7 in the J1962 connector). It will now be possible to hook up to all ECU's with one connector, the OBD II connector inside the passenger compartment, (this will not be any problem for a properly programmed OBD II Scan Tool, as it only will look for the emission related ECU's).
Technical Paper

Start of Injection Strategies for HCCI-combustion

2004-10-25
2004-01-2990
Homogeneous Charge Compression Ignition (HCCI) has a great potential for low NOx emissions but problems with emissions of unburned hydrocarbons (HC). One way of reducing the HC is to use direct injection. The purpose of this paper is to present experimental data on the trade off between NOx and HC. Injection timing, injection pressure and nozzle configuration all effect homogeneity of the mixture and thus the NOx and HC emissions. The engine studied is a single cylinder version of a Scania D12 that represents a modern heavy-duty truck size engine. A common rail (CR) system has been used to control injection pressure and timing. The combustion using injectors with different nozzle hole diameters and spray angle, both colliding and non-colliding, has been studied. The NOx emission level changes with start of injection (SOI) and the levels are low for early injection timing, increasing with retarded SOI. Different injectors produce different NOx levels.
Technical Paper

Volvo LCP 2000 Light Component Project

1985-02-01
850570
Each year Volvo Car Corporation invests about 10 per cent of its turnover in product development. One tenth of this amount is reserved for advanced research projects, or high risk projects. Volvo LCP (Light Component Project) 2000 is one of these projects and a preparation in technology and competence for the year 2000. In addition to broad theoretical know-how concerning new materials, alternative drive lines, new production methods, etc, the LCP study has resulted in four road-going experimental cars. The project which started in mid 1979 was presented to the public in October 1983 after a year's testing and evaluation of the car, its sub-systems and design solutions. This paper is a description of the project work. Another paper ‘Magnesium in the Volvo LCP 2000’, deals more specifically with the results of the LCP material studies.
Technical Paper

Simple Feedback Control and Mode Switching Strategies for GDI Engines

2000-03-06
2000-01-0263
A novel approach to the control of a GDI engine is presented. The controller consists of a combination of sub-controllers, where torque feedback is a central part. The sub-controllers are with a few exceptions designed using simple linear feedback and feedforward control design methods. Special mode switch strategies are used to minimize the torque bumps during combustion mode changes. The controller has been evaluated on the European driving cycle using a dynamic simulation model, including a powertrain model and a driver model, with good results.
X